Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Joe, A. W. B., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., Rudnicki, M. A., & Rossi, F. M. V. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology, 12(2), 153–163.

Authors 8
  1. Aaron W. B. Joe (first)
  2. Lin Yi (additional)
  3. Anuradha Natarajan (additional)
  4. Fabien Le Grand (additional)
  5. Leslie So (additional)
  6. Joy Wang (additional)
  7. Michael A. Rudnicki (additional)
  8. Fabio M. V. Rossi (additional)
References 46 Referenced 1,389
  1. Charge, S. B. & Rudnicki, M. A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209–238 (2004). (10.1152/physrev.00019.2003) / Physiol. Rev. by SB Charge (2004)
  2. Dhawan, J. & Rando, T. A. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol. 15, 666–673 (2005). (10.1016/j.tcb.2005.10.007) / Trends Cell Biol. by J Dhawan (2005)
  3. Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005). (10.1016/j.cell.2005.05.010) / Cell by CA Collins (2005)
  4. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007). (10.1016/j.cell.2007.03.044) / Cell by S Kuang (2007)
  5. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008). (10.1038/nature07384) / Nature by A Sacco (2008)
  6. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961). (10.1083/jcb.9.2.493) / J. Biophys. Biochem. Cytol. by A Mauro (1961)
  7. Morgan, J. E. & Partridge, T. A. Muscle satellite cells. Int. J. Biochem. Cell Biol. 35, 1151–1156 (2003). (10.1016/S1357-2725(03)00042-6) / Int. J. Biochem. Cell Biol. by JE Morgan (2003)
  8. Buckingham, M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev. 16, 525–532 (2006). (10.1016/j.gde.2006.08.008) / Curr. Opin. Genet. Dev. by M Buckingham (2006)
  9. Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409 (2002). (10.1016/S1534-5807(02)00254-X) / Dev. Cell by IM Conboy (2002)
  10. Otto, A. et al. Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J. Cell Sci. 121, 2939–2950 (2008). (10.1242/jcs.026534) / J. Cell Sci. by A Otto (2008)
  11. Bodine, S. C. et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biol. 3, 1014–1019 (2001). (10.1038/ncb1101-1014) / Nature Cell Biol. by SC Bodine (2001)
  12. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007). (10.1126/science.1144090) / Science by AS Brack (2007)
  13. Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardi, M. & Munoz-Canoves, P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell. Metab. 7, 33–44 (2008). (10.1016/j.cmet.2007.11.011) / Cell. Metab. by AL Serrano (2008)
  14. Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069 (2007). (10.1084/jem.20070075) / J. Exp. Med. by L Arnold (2007)
  15. Sonnet, C. et al. Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J. Cell Sci. 119, 2497–2507 (2006). (10.1242/jcs.02988) / J. Cell Sci. by C Sonnet (2006)
  16. Contreras-Shannon, V. et al. Fat accumulation with altered inflammation and regeneration in skeletal muscle of CCR2-/- mice following ischemic injury. Am. J. Physiol. Cell Physiol. 292, C953–967 (2007). (10.1152/ajpcell.00154.2006) / Am. J. Physiol. Cell Physiol. by V Contreras-Shannon (2007)
  17. Lipton, B. Skeletal muscle regneration in muscular dystrophy, in Muscle Regeneration (ed. Mauro, A.) 31–40 (Raven Press, 1979). / Muscle Regeneration by B Lipton (1979)
  18. Shefer, G., Wleklinski-Lee, M. & Yablonka-Reuveni, Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J. Cell Sci. 117, 5393–5404 (2004). (10.1242/jcs.01419) / J. Cell Sci. by G Shefer (2004)
  19. Li, Y. et al. Transforming growth factor-β1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am. J. Pathol. 164, 1007–1019 (2004). (10.1016/S0002-9440(10)63188-4) / Am. J. Pathol. by Y Li (2004)
  20. Li, Y. & Huard, J. Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am. J. Pathol. 161, 895–907 (2002). (10.1016/S0002-9440(10)64250-2) / Am. J. Pathol. by Y Li (2002)
  21. Beauchamp, J. R. et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151, 1221–1234 (2000). (10.1083/jcb.151.6.1221) / J. Cell Biol. by JR Beauchamp (2000)
  22. Mitchell, P. O. et al. Sca-1 negatively regulates proliferation and differentiation of muscle cells. Dev. Biol. 283, 240–252 (2005). (10.1016/j.ydbio.2005.04.016) / Dev. Biol. by PO Mitchell (2005)
  23. Polesskaya, A., Seale, P. & Rudnicki, M. A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113, 841–852 (2003). (10.1016/S0092-8674(03)00437-9) / Cell by A Polesskaya (2003)
  24. Sherwood, R. I. et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119, 543–554 (2004). (10.1016/j.cell.2004.10.021) / Cell by RI Sherwood (2004)
  25. De Angelis, L. et al. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J. Cell Biol. 147, 869–878 (1999). (10.1083/jcb.147.4.869) / J. Cell Biol. by L De Angelis (1999)
  26. Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008). (10.1016/j.cell.2008.09.036) / Cell by MS Rodeheffer (2008)
  27. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008). (10.1126/science.1156232) / Science by W Tang (2008)
  28. Joe, A. W., Yi, L., Even, Y., Vogl, A. W. & Rossi, F. M. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 27, 2563–2570 (2009). (10.1002/stem.190) / Stem Cells by AW Joe (2009)
  29. Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005). (10.1126/science.1114758) / Science by D Montarras (2005)
  30. Rando, T. A. & Blau, H. M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol. 125, 1275–1287 (1994). (10.1083/jcb.125.6.1275) / J. Cell Biol. by TA Rando (1994)
  31. Blanco-Bose, W. E., Yao, C. C., Kramer, R. H. & Blau, H. M. Purification of mouse primary myoblasts based on α 7 integrin expression. Exp. Cell Res. 265, 212–220 (2001). (10.1006/excr.2001.5191) / Exp. Cell Res. by WE Blanco-Bose (2001)
  32. Strutz, F. et al. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 130, 393–405 (1995). (10.1083/jcb.130.2.393) / J. Cell Biol. by F Strutz (1995)
  33. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Rev. Mol. Cell Biol. 3, 349–363 (2002). (10.1038/nrm809) / Nature Rev. Mol. Cell Biol. by JJ Tomasek (2002)
  34. Olson, L. E. & Soriano, P. Increased PDGFRα activation disrupts connective tissue development and drives systemic fibrosis. Dev. Cell 16, 303–313 (2009). (10.1016/j.devcel.2008.12.003) / Dev. Cell by LE Olson (2009)
  35. Arsic, N. et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol. Ther. 10, 844–854 (2004). (10.1016/j.ymthe.2004.08.007) / Mol. Ther. by N Arsic (2004)
  36. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008). (10.1038/nature07182) / Nature by P Seale (2008)
  37. Harris, J. B., Vater, R., Wilson, M. & Cullen, M. J. Muscle fibre breakdown in venom-induced muscle degeneration. J. Anat. 202, 363–372 (2003). (10.1046/j.1469-7580.2003.00171.x) / J. Anat. by JB Harris (2003)
  38. Harris, J. B. Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon 42, 933–945 (2003). (10.1016/j.toxicon.2003.11.011) / Toxicon by JB Harris (2003)
  39. Kafadar, K. A. et al. Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration. Dev. Biol. 326, 47–59 (2009). (10.1016/j.ydbio.2008.10.036) / Dev. Biol. by KA Kafadar (2009)
  40. Shore, E. M. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet. 38, 525–527 (2006). (10.1038/ng1783) / Nature Genet. by EM Shore (2006)
  41. Wallace, G. Q. & McNally, E. M. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu. Rev. Physiol. 71, 37–57 (2008). (10.1146/annurev.physiol.010908.163216) / Annu. Rev. Physiol. by GQ Wallace (2008)
  42. Goss, R. J. Regeneration versus repair in Wound Healing: Biochemical and Clinical Aspects. (eds Cohen, I. K., Diegelmann, R. F. & Lindblad, W. J.) 20–39 (W. B. Saunders Co., 1992). / Wound Healing: Biochemical and Clinical Aspects by RJ Goss (1992)
  43. Ladi, E., Yin, X., Chtanova, T. & Robey, E. A. Thymic microenvironments for T cell differentiation and selection. Nature Immunol. 7, 338–343 (2006). (10.1038/ni1323) / Nature Immunol. by E Ladi (2006)
  44. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001). (10.1186/1471-213X-1-4) / BMC Dev. Biol. by S Srinivas (2001)
  45. Brazelton, T. R. & Blau, H. M. Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23, 1251–1265 (2005). (10.1634/stemcells.2005-0149) / Stem Cells by TR Brazelton (2005)
  46. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006). (10.1038/nature04372) / Nature by M Shackleton (2006)
Dates
Type When
Created 15 years, 7 months ago (Jan. 17, 2010, 1:40 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 3:33 p.m.)
Indexed 31 minutes ago (Aug. 27, 2025, 8:34 a.m.)
Issued 15 years, 7 months ago (Jan. 17, 2010)
Published 15 years, 7 months ago (Jan. 17, 2010)
Published Online 15 years, 7 months ago (Jan. 17, 2010)
Published Print 15 years, 6 months ago (Feb. 1, 2010)
Funders 0

None

@article{Joe_2010, title={Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis}, volume={12}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/ncb2015}, DOI={10.1038/ncb2015}, number={2}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Joe, Aaron W. B. and Yi, Lin and Natarajan, Anuradha and Le Grand, Fabien and So, Leslie and Wang, Joy and Rudnicki, Michael A. and Rossi, Fabio M. V.}, year={2010}, month=jan, pages={153–163} }