Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Krieg, M., Arboleda-Estudillo, Y., Puech, P.-H., Käfer, J., Graner, F., Müller, D. J., & Heisenberg, C.-P. (2008). Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biology, 10(4), 429–436.

Authors 7
  1. M. Krieg (first)
  2. Y. Arboleda-Estudillo (additional)
  3. P.-H. Puech (additional)
  4. J. Käfer (additional)
  5. F. Graner (additional)
  6. D. J. Müller (additional)
  7. C.-P. Heisenberg (additional)
References 33 Referenced 706
  1. Tepass, U., Godt, D. & Winklbauer, R. Cell sorting in animal development: Signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572–582 (2002). (10.1016/S0959-437X(02)00342-8) / Curr. Opin. Genet. Dev. by U Tepass (2002)
  2. Montero, J. A. & Heisenberg, C. P. Gastrulation dynamics: Cells move into focus. Trends Cell Biol. 14, 620–627 (2004). (10.1016/j.tcb.2004.09.008) / Trends Cell Biol. by JA Montero (2004)
  3. Brodland, G. W. The differential interfacial tension hypothesis (dith): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124, 188–197 (2002). (10.1115/1.1449491) / J. Biomech. Eng. by GW Brodland (2002)
  4. Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol. 2, 313–317 (2000). (10.1038/35014000) / Nature Cell Biol. by M Benoit (2000)
  5. Puech, P. H., Poole, K., Knebel, D. & Muller, D. J. A new technical approach to quantify cell-cell adhesion forces by afm. Ultramicroscopy 106, 637–644 (2006). (10.1016/j.ultramic.2005.08.003) / Ultramicroscopy by PH Puech (2006)
  6. Zhang, X. et al. Atomic force microscopy measurement of leukocyte-endothelial interaction. Am. J. Physiol. Heart Circ. Physiol. 286, H359–367 (2004). (10.1152/ajpheart.00491.2003) / Am. J. Physiol. Heart Circ. Physiol. by X Zhang (2004)
  7. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005). (10.1038/nrm1699) / Nature Rev. Mol. Cell Biol. by BM Gumbiner (2005)
  8. Ulrich, F. et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9, 555–564 (2005). (10.1016/j.devcel.2005.08.011) / Dev. Cell by F Ulrich (2005)
  9. Montero, J. A. et al. Shield formation at the onset of zebrafish gastrulation. Development 132, 1187–1198 (2005). (10.1242/dev.01667) / Development by JA Montero (2005)
  10. Geiger, B. et al. Broad spectrum pan-cadherin antibodies, reactive with the C-terminal 24 amino acid residues of N-cadherin. J. Cell Sci. 97, 607–614. (1990). (10.1242/jcs.97.4.607) / J. Cell Sci. by B Geiger (1990)
  11. Harris, A. K. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the steinberg hypothesis. J. Theor. Biol. 61, 267–285 (1976). (10.1016/0022-5193(76)90019-9) / J. Theor. Biol. by AK Harris (1976)
  12. Dai, J., Ting-Beall, H. P., Hochmuth, R. M., Sheetz, M. P. & Titus, M. A. Myosin I contributes to the generation of resting cortical tension. Biophys. J. 77, 1168–1176 (1999). (10.1016/S0006-3495(99)76968-7) / Biophys. J. by J Dai (1999)
  13. Evans, E. & Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160 (1989). (10.1016/S0006-3495(89)82660-8) / Biophys. J. by E Evans (1989)
  14. Thoumine, O., Cardoso, O. & Meister, J. J. Changes in the mechanical properties of fibroblasts during spreading: A micromanipulation study. Eur. Biophys. J. 28, 222–234 (1999). (10.1007/s002490050203) / Eur. Biophys. J. by O Thoumine (1999)
  15. Schier, A. F. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589–621. (2003). (10.1146/annurev.cellbio.19.041603.094522) / Annu. Rev. Cell Dev. Biol. by AF Schier (2003)
  16. Gritsman, K. et al. The EGF–CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121–132 (1999). (10.1016/S0092-8674(00)80720-5) / Cell by K Gritsman (1999)
  17. Schötz, E.-M. et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning HFSP J. 2, 42–56 (2008). (10.2976/1.2834817) / HFSP J. by E-M Schötz (2008)
  18. Davis, G. S., Phillips, H. M. & Steinberg, M. S. Germ-layer surface tensions and “tissue affinities” in Rana pipiens gastrulae: quantitative measurements. Dev. Biol. 192, 630–644 (1997). (10.1006/dbio.1997.8741) / Dev. Biol. by GS Davis (1997)
  19. Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002). (10.1016/S0960-9822(02)00864-3) / Curr. Biol. by F Marlow (2002)
  20. Maree, A. F. M., Grieneisen, V. A. & Hogeweg, P. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. in Single Cell-Based Models in Biology and Medicine (eds Anderson, A. R. A., Chaplain, M. & Rejniak, K. A.) 107–136 (Birkhäuser Verlag, Basel; 2007). (10.1007/978-3-7643-8123-3_5) / Single Cell-Based Models in Biology and Medicine by AFM Maree (2007)
  21. Ouchi, N. B., Glazier, J. A., Rieu, J.-P., Upadhyaya, A. & Sawada, Y. Improving the realism of the cellular potts model in simulations of biological cells. Physica A: Stat. Mech. Applic. 329, 451–458 (2003). (10.1016/S0378-4371(03)00574-0) / Physica A: Stat. Mech. Applic. by NB Ouchi (2003)
  22. Graner, F. Can surface adhesion drive cell-rearrangement? Part I: Biological cell-sorting. J. Theoret. Biol. 164, 455–476 (1993). (10.1006/jtbi.1993.1167) / J. Theoret. Biol. by F Graner (1993)
  23. Kafer, J., Hayashi, T., Maree, A. F. M., Carthew, R. W. & Graner, F. Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. Proc. Natl Acad. Sci. USA 104, 18549–18554 (2007). (10.1073/pnas.0704235104) / Proc. Natl Acad. Sci. USA by J Kafer (2007)
  24. Shimizu, T. et al. E-cadherin is required for gastrulation cell movements in zebrafish. Mech. Dev. 122, 747–763 (2005). (10.1016/j.mod.2005.03.008) / Mech. Dev. by T Shimizu (2005)
  25. Warga, R. M. & Kane, D. A. A role for N-cadherin in mesodermal morphogenesis during gastrulation. Dev. Biol. 310, 211–225 (2007). (10.1016/j.ydbio.2007.06.023) / Dev. Biol. by RM Warga (2007)
  26. Steinberg, M. S. Differential adhesion in morphogenesis: A modern view. Curr. Opin. Genet. Dev. 17, 281–286 (2007). (10.1016/j.gde.2007.05.002) / Curr. Opin. Genet. Dev. by MS Steinberg (2007)
  27. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007). (10.1038/nrm2222) / Nature Rev. Mol. Cell Biol. by T Lecuit (2007)
  28. Aoki, T. O. et al. Molecular integration of casanova in the nodal signalling pathway controlling endoderm formation. Development 129, 275–286 (2002). (10.1242/dev.129.2.275) / Development by TO Aoki (2002)
  29. Carmany-Rampey, A. & Schier, A. F. Single-cell internalization during zebrafish gastrulation. Curr. Biol. 11, 1261–1265 (2001). (10.1016/S0960-9822(01)00353-0) / Curr. Biol. by A Carmany-Rampey (2001)
  30. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002). (10.1016/S0006-3495(02)75620-8) / Biophys. J. by EK Dimitriadis (2002)
  31. Rosenbluth, M. J., Lam, W. A. & Fletcher, D. A. Force microscopy of nonadherent cells: A comparison of leukemia cell deformability. Biophys. J. 90, 2994–3003 (2006). (10.1529/biophysj.105.067496) / Biophys. J. by MJ Rosenbluth (2006)
  32. Lomakina, E. B., Spillmann, C. M., King, M. R. & Waugh, R. E. Rheological analysis and measurement of neutrophil indentation. Biophys. J. 87, 4246–4258 (2004). (10.1529/biophysj.103.031765) / Biophys. J. by EB Lomakina (2004)
  33. Crick, S. L. & Yin, F. C. Assessing micromechanical properties of cells with atomic force microscopy: Importance of the contact point. Biomech. Model. Mechanobiol. 6, 199–210 (2007). (10.1007/s10237-006-0046-x) / Biomech. Model. Mechanobiol. by SL Crick (2007)
Dates
Type When
Created 17 years, 4 months ago (March 30, 2008, 1:10 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 3:31 p.m.)
Indexed 1 hour, 55 minutes ago (Aug. 29, 2025, 6:43 a.m.)
Issued 17 years, 5 months ago (March 23, 2008)
Published 17 years, 5 months ago (March 23, 2008)
Published Online 17 years, 5 months ago (March 23, 2008)
Published Print 17 years, 4 months ago (April 1, 2008)
Funders 0

None

@article{Krieg_2008, title={Tensile forces govern germ-layer organization in zebrafish}, volume={10}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/ncb1705}, DOI={10.1038/ncb1705}, number={4}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Krieg, M. and Arboleda-Estudillo, Y. and Puech, P.-H. and Käfer, J. and Graner, F. and Müller, D. J. and Heisenberg, C.-P.}, year={2008}, month=mar, pages={429–436} }