Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Song, H., Hollstein, M., & Xu, Y. (2007). p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nature Cell Biology, 9(5), 573–580.

Authors 3
  1. Hoseok Song (first)
  2. Monica Hollstein (additional)
  3. Yang Xu (additional)
References 30 Referenced 347
  1. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991). (10.1126/science.1905840) / Science by M Hollstein (1991)
  2. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000). / Cancer Res. by A Sigal (2000)
  3. Gudkov, A. Microarray analysis of p53-mediated transcription: multi-thousand piece puzzle or invitation to collective thinking. Cancer Biol. Ther. 2, 444–445 (2003). (10.4161/cbt.2.4.480) / Cancer Biol. Ther. by A Gudkov (2003)
  4. Murphy, M. E. The thousand doors that lead to death: p53-dependent repression and apoptosis. Cancer Biol. Ther. 2, 381–382 (2003). (10.4161/cbt.2.4.439) / Cancer Biol. Ther. by ME Murphy (2003)
  5. Lin, T. et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biol. 7, 165–171 (2005). (10.1038/ncb1211) / Nature Cell Biol. by T Lin (2005)
  6. Xu, Y. A new role for p53 in maintaining genetic stability in embryonic stem cells, Cell Cycle 4, 363–364 (2005). (10.4161/cc.4.3.1529) / Cell Cycle by Y Xu (2005)
  7. Hainaut, P. & Hollstein, M. p53 and human cancer: the first ten thousand mutations. Adv. Cancer Res. 77, 81–137 (2000). (10.1016/S0065-230X(08)60785-X) / Adv. Cancer Res. by P Hainaut (2000)
  8. Luo, J. L. et al. Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20, 320–328 (2001). (10.1038/sj.onc.1204080) / Oncogene by JL Luo (2001)
  9. Feng, L., Hollstein, M. & Xu, Y. Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5, 2812–2819 (2006). (10.4161/cc.5.23.3526) / Cell Cycle by L Feng (2006)
  10. Hergenhahn, M., Luo, J. L. & Hollstein, M. p53 designer genes for the modern mouse. Cell Cycle 3, 738–741 (2004). (10.4161/cc.3.6.890) / Cell Cycle by M Hergenhahn (2004)
  11. Ben-Porath, I. & Weinberg, R. A. The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol. 37, 961–976 (2005). (10.1016/j.biocel.2004.10.013) / Biochem. Cell Biol. by I Ben-Porath (2005)
  12. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004). (10.1016/j.cell.2004.11.004) / Cell by KP Olive (2004)
  13. Liao, M. J. et al. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol Cell Biol 18, 3495–3501 (1998). (10.1128/MCB.18.6.3495) / Mol Cell Biol by MJ Liao (1998)
  14. Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003). (10.1016/S0092-8674(03)00566-X) / Cell by CH Bassing (2003)
  15. Lista, F., Bertness, V., Guidos, C. J., Danska, J. S. & Kirsch, I. R. The absolute number of trans-rearrangements between the TCRG and TCRB loci is predictive of lymphoma risk: a severe combined immune deficiency (SCID) murine model. Cancer Res. 57, 4408–4413 (1997). / Cancer Res. by F Lista (1997)
  16. Kang, J., Bronson, R. T. & Xu, Y. Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J. 21, 1447–1455 (2002). (10.1093/emboj/21.6.1447) / EMBO J. by J Kang (2002)
  17. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003). (10.1038/nrc1011) / Nature Rev. Cancer by Y Shiloh (2003)
  18. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996). (10.1101/gad.10.19.2411) / Genes Dev. by Y Xu (1996)
  19. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996). (10.1016/S0092-8674(00)80086-0) / Cell by C Barlow (1996)
  20. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003). (10.1038/nature01368) / Nature by CJ Bakkenist (2003)
  21. Xu, Y. DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nature Rev. Immunol. 24, 261–270 (2006). (10.1038/nri1804) / Nature Rev. Immunol. by Y Xu (2006)
  22. Fernandez-Capetillo, O. et al. DNA damage-induced G2–M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biol. 4, 993–997 (2002). (10.1038/ncb884) / Nature Cell Biol. by O Fernandez-Capetillo (2002)
  23. Kang, J. et al. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol. Cell Biol. 25, 661–670 (2005). (10.1128/MCB.25.2.661-670.2005) / Mol. Cell Biol. by J Kang (2005)
  24. Falck, J., Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005). (10.1038/nature03442) / Nature by J Falck (2005)
  25. You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell Biol. 25, 5363–5379 (2005). (10.1128/MCB.25.13.5363-5379.2005) / Mol. Cell Biol. by Z You (2005)
  26. Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308, 551–554 (2005). (10.1126/science.1108297) / Science by JH Lee (2005)
  27. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell Biol. 21, 1874–1887 (2001). (10.1128/MCB.21.5.1874-1887.2001) / Mol. Cell Biol. by C Gaiddon (2001)
  28. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004). (10.1016/j.cell.2004.11.006) / Cell by GA Lang (2004)
  29. Assenmacher, N. & Hopfner, K. P. MRE11/RAD50/NBS1: complex activities. Chromosoma 113, 157–166 (2004). (10.1007/s00412-004-0306-4) / Chromosoma by N Assenmacher (2004)
  30. Chao, C. et al. Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses. J. Biol. Chem. 278, 41028–41033 (2003). (10.1074/jbc.M306938200) / J. Biol. Chem. by C Chao (2003)
Dates
Type When
Created 18 years, 4 months ago (April 8, 2007, 1:03 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 3:29 p.m.)
Indexed 1 month, 2 weeks ago (July 16, 2025, 9:47 a.m.)
Issued 18 years, 4 months ago (April 8, 2007)
Published 18 years, 4 months ago (April 8, 2007)
Published Online 18 years, 4 months ago (April 8, 2007)
Published Print 18 years, 4 months ago (May 1, 2007)
Funders 0

None

@article{Song_2007, title={p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM}, volume={9}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/ncb1571}, DOI={10.1038/ncb1571}, number={5}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Song, Hoseok and Hollstein, Monica and Xu, Yang}, year={2007}, month=apr, pages={573–580} }