Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Weirich, C. S., Erzberger, J. P., Flick, J. S., Berger, J. M., Thorner, J., & Weis, K. (2006). Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature Cell Biology, 8(7), 668–676.

Authors 6
  1. Christine S. Weirich (first)
  2. Jan P. Erzberger (additional)
  3. Jeffrey S. Flick (additional)
  4. James M. Berger (additional)
  5. Jeremy Thorner (additional)
  6. Karsten Weis (additional)
References 43 Referenced 249
  1. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005). (10.1126/science.1111443) / Science by MJ Moore (2005)
  2. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nature Rev. Mol. Cell. Biol. 5, 232–241 (2004). (10.1038/nrm1335) / Nature Rev. Mol. Cell. Biol. by S Rocak (2004)
  3. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001). (10.1126/science.291.5501.121) / Science by E Jankowsky (2001)
  4. Fairman, M. E. et al. Protein displacement by DExH/D 'RNA helicases' without duplex unwinding. Science 304, 730–734 (2004). (10.1126/science.1095596) / Science by ME Fairman (2004)
  5. Tseng, S. S. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998). (10.1093/emboj/17.9.2651) / EMBO J. by SS Tseng (1998)
  6. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998). (10.1093/emboj/17.9.2663) / EMBO J. by CA Snay-Hodge (1998)
  7. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999). (10.1093/emboj/18.15.4332) / EMBO J. by C Schmitt (1999)
  8. Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 18, 5778–5788 (1999). (10.1093/emboj/18.20.5778) / EMBO J. by CA Hodge (1999)
  9. Strahm, Y. et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. EMBO J. 18, 5761–5777 (1999). (10.1093/emboj/18.20.5761) / EMBO J. by Y Strahm (1999)
  10. Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16, 749–760 (2004). (10.1016/j.molcel.2004.10.032) / Mol. Cell by CS Weirich (2004)
  11. Stutz, F. et al. The yeast nucleoporin rip1p contributes to multiple export pathways with no essential role for its FG-repeat region. Genes Dev. 11, 2857–2868 (1997). (10.1101/gad.11.21.2857) / Genes Dev. by F Stutz (1997)
  12. Saavedra, C. A., Hammell, C. M., Heath, C. V. & Cole, C. N. Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. Genes Dev. 11, 2845–2856 (1997). (10.1101/gad.11.21.2845) / Genes Dev. by CA Saavedra (1997)
  13. Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20, 645–651 (2005). (10.1016/j.molcel.2005.10.005) / Mol. Cell by MK Lund (2005)
  14. Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002). (10.1093/emboj/21.5.1177) / EMBO J. by J Zhao (2002)
  15. Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell 14, 1664–1676 (2003). (10.1091/mbc.e02-09-0602) / Mol. Biol. Cell by F Estruch (2003)
  16. York, J. D., Odom, A. R., Murphy, R., Ives, E. B. & Wente, S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100 (1999). (10.1126/science.285.5424.96) / Science by JD York (1999)
  17. Miller, A. L. et al. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. J. Biol. Chem. 279, 51022–51032 (2004). (10.1074/jbc.M409394200) / J. Biol. Chem. by AL Miller (2004)
  18. Hanakahi, L. A. & West, S. C. Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J. 21, 2038–2044 (2002). (10.1093/emboj/21.8.2038) / EMBO J. by LA Hanakahi (2002)
  19. Ma, Y. & Lieber, M. R. Binding of inositol hexakisphosphate (IP6) to Ku but not to DNA-PKcs. J. Biol. Chem. 277, 10756–10759 (2002). (10.1074/jbc.C200030200) / J. Biol. Chem. by Y Ma (2002)
  20. Hanakahi, L. A., Bartlet-Jones, M., Chappell, C., Pappin, D. & West, S. C. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102, 721–729 (2000). (10.1016/S0092-8674(00)00061-1) / Cell by LA Hanakahi (2000)
  21. Shen, X., Xiao, H., Ranallo, R., Wu, W. H. & Wu, C. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112–114 (2003). (10.1126/science.1078068) / Science by X Shen (2003)
  22. Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R. & O'Shea, E. K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003). (10.1126/science.1078062) / Science by DJ Steger (2003)
  23. Saiardi, A., Resnick, A. C., Snowman, A. M., Wendland, B. & Snyder, S. H. Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl Acad. Sci. USA 102, 1911–1914 (2005). (10.1073/pnas.0409322102) / Proc. Natl Acad. Sci. USA by A Saiardi (2005)
  24. York, S. J., Armbruster, B. N., Greenwell, P., Petes, T. D. & York, J. D. Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280, 4264–4269 (2005). (10.1074/jbc.M412070200) / J. Biol. Chem. by SJ York (2005)
  25. Saiardi, A., Sciambi, C., McCaffery, J. M., Wendland, B. & Snyder, S. H. Inositol pyrophosphates regulate endocytic trafficking. Proc. Natl Acad. Sci. USA 99, 14206–14211 (2002). (10.1073/pnas.212527899) / Proc. Natl Acad. Sci. USA by A Saiardi (2002)
  26. Macbeth, M. R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 1534–1539 (2005). (10.1126/science.1113150) / Science by MR Macbeth (2005)
  27. Flick, J. S. & Thorner, J. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5861–5876 (1993). (10.1128/MCB.13.9.5861) / Mol. Cell. Biol. by JS Flick (1993)
  28. Odom, A. R., Stahlberg, A., Wente, S. R. & York, J. D. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026–2029 (2000). (10.1126/science.287.5460.2026) / Science by AR Odom (2000)
  29. Saiardi, A., Erdjument-Bromage, H., Snowman, A. M., Tempst, P. & Snyder, S. H. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323–1326 (1999). (10.1016/S0960-9822(00)80055-X) / Curr. Biol. by A Saiardi (1999)
  30. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006). (10.1016/j.gene.2005.10.019) / Gene by O Cordin (2006)
  31. Larsson, C., Nilsson, A., Blomberg, A. & Gustafsson, L. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J. Bacteriol. 179, 7243–7250 (1997). (10.1128/jb.179.23.7243-7250.1997) / J. Bacteriol. by C Larsson (1997)
  32. Estruch, F., Hodge, C. A., Rodriguez-Navarro, S. & Cole, C. N. Physical and genetic interactions link the yeast protein Zds1p with mRNA nuclear export. J. Biol. Chem. 280, 9691–9697 (2005). (10.1074/jbc.M413025200) / J. Biol. Chem. by F Estruch (2005)
  33. Rogers, G. W., Jr., Komar, A. A. & Merrick, W. C. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307–331 (2002). (10.1016/S0079-6603(02)72073-4) / Prog. Nucleic Acid Res. Mol. Biol. by GW Rogers Jr. (2002)
  34. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature Struct. Mol. Biol. 12, 861–869 (2005). (10.1038/nsmb990) / Nature Struct. Mol. Biol. by L Ballut (2005)
  35. Rollenhagen, C., Hodge, C. A. & Cole, C. N. The nuclear pore complex and the DEAD box protein Rat8p/Dbp5p have nonessential features which appear to facilitate mRNA export following heat shock. Mol. Cell. Biol. 24, 4869–4879 (2004). (10.1128/MCB.24.11.4869-4879.2004) / Mol. Cell. Biol. by C Rollenhagen (2004)
  36. Takemura, R., Inoue, Y. & Izawa, S. Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J. Cell Sci. 117, 4189–4197 (2004). (10.1242/jcs.01296) / J. Cell Sci. by R Takemura (2004)
  37. Vainberg, I. E., Dower, K. & Rosbash, M. Nuclear export of heat shock and non-heat-shock mRNA occurs via similar pathways. Mol. Cell. Biol. 20, 3996–4005 (2000). (10.1128/MCB.20.11.3996-4005.2000) / Mol. Cell. Biol. by IE Vainberg (2000)
  38. Ausubel, F. M. et al. (eds) Current Protocols in Molecular Biology (John Wiley and Sons, Hoboken,1987). / Current Protocols in Molecular Biology by FM Ausubel (1987)
  39. Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nature Struct. Biol. 4, 463–467 (1997). (10.1038/nsb0697-463) / Nature Struct. Biol. by N Yao (1997)
  40. Yang, Q. & Jankowsky, E. ATP- and ADP-Dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44, 13591–13601 (2005). (10.1021/bi0508946) / Biochemistry by Q Yang (2005)
  41. Huang, T. G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J. Biol. Chem. 269, 16493–16501 (1994). (10.1016/S0021-9258(17)34033-4) / J. Biol. Chem. by TG Huang (1994)
  42. Guarente, L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101, 181–191 (1983). (10.1016/0076-6879(83)01013-7) / Methods Enzymol by L Guarente (1983)
  43. Maurer, P. et al. The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). Mol. Biol. Cell 12, 539–549 (2001). (10.1091/mbc.12.3.539) / Mol. Biol. Cell by P Maurer (2001)
Dates
Type When
Created 19 years, 2 months ago (June 18, 2006, 1:32 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 3:28 p.m.)
Indexed 1 hour, 11 minutes ago (Sept. 7, 2025, 7:53 a.m.)
Issued 19 years, 2 months ago (June 18, 2006)
Published 19 years, 2 months ago (June 18, 2006)
Published Online 19 years, 2 months ago (June 18, 2006)
Published Print 19 years, 2 months ago (July 1, 2006)
Funders 0

None

@article{Weirich_2006, title={Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export}, volume={8}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/ncb1424}, DOI={10.1038/ncb1424}, number={7}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Weirich, Christine S. and Erzberger, Jan P. and Flick, Jeffrey S. and Berger, James M. and Thorner, Jeremy and Weis, Karsten}, year={2006}, month=jun, pages={668–676} }