Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J. S., Chen, M., Wallar, B. J., Alberts, A. S., & Gundersen, G. G. (2004). EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biology, 6(9), 820–830.

Authors 9
  1. Ying Wen (first)
  2. Christina H. Eng (additional)
  3. Jan Schmoranzer (additional)
  4. Noemi Cabrera-Poch (additional)
  5. Edward J. S. Morris (additional)
  6. Michael Chen (additional)
  7. Bradley J. Wallar (additional)
  8. Arthur S. Alberts (additional)
  9. Gregg G. Gundersen (additional)
References 50 Referenced 474
  1. Gundersen, G.G. & Bulinski, J.C. Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin. Eur. J. Cell Biol. 42, 288–294 (1986). / Eur. J. Cell Biol. by GG Gundersen (1986)
  2. Gundersen, G.G. & Bulinski, J.C. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl Acad. Sci. USA 85, 5946–5950 (1988). (10.1073/pnas.85.16.5946) / Proc. Natl Acad. Sci. USA by GG Gundersen (1988)
  3. Gundersen, G.G., Khawaja, S. & Bulinski, J.C. Generation of a stable, posttranslationally modified microtubule array is an early event in myogenic differentiation. J. Cell. Biol. 109, 2275–2288 (1989). (10.1083/jcb.109.5.2275) / J. Cell. Biol. by GG Gundersen (1989)
  4. Cook, T.A., Nagasaki, T. & Gundersen, G.G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175–185 (1998). (10.1083/jcb.141.1.175) / J. Cell Biol. by TA Cook (1998)
  5. Palazzo, A.F., Cook, T.A., Alberts, A.S. & Gundersen, G.G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001). (10.1038/35087035) / Nature Cell Biol. by AF Palazzo (2001)
  6. Palazzo, A.F., Eng, C.H., Schlaepfer, D.D., Marcantonio, E.E. & Gundersen, G.G. Localized stabilization of miicrotubules by integrin and FAK facilitated Rho signaling. Science 303, 836–839 (2004). (10.1126/science.1091325) / Science by AF Palazzo (2004)
  7. Webster, D.R., Gundersen, G.G., Bulinski, J.C. & Borisy, G.G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc. Natl Acad. Sci. USA 84, 9040–9044 (1987). (10.1073/pnas.84.24.9040) / Proc. Natl Acad. Sci. USA by DR Webster (1987)
  8. Infante, A.S., Stein, M.S., Zhai, Y., Borisy, G.G. & Gundersen, G.G. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci. 113, 3907–3919 (2000). (10.1242/jcs.113.22.3907) / J. Cell Sci. by AS Infante (2000)
  9. Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nature Rev. Mol. Cell Biol. 4, 938–947 (2003). (10.1038/nrm1260) / Nature Rev. Mol. Cell Biol. by S Westermann (2003)
  10. Gundersen, G.G., Kalnoski, M.H. & Bulinski, J.C. Distinct populations of microtubules: tyrosinated and nontyrosinated α-tubulin are distributed differently in vivo. Cell 38, 779–789 (1984). (10.1016/0092-8674(84)90273-3) / Cell by GG Gundersen (1984)
  11. Liao, G. & Gundersen, G.G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–9803 (1998). (10.1074/jbc.273.16.9797) / J. Biol. Chem. by G Liao (1998)
  12. Lin, S.X., Gundersen, G.G. & Maxfield, F.R. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol. Biol. Cell 13, 96–109 (2002). (10.1091/mbc.01-05-0224) / Mol. Biol. Cell by SX Lin (2002)
  13. Gurland, G. & Gundersen, G.G. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J. Cell Biol. 131, 1275–1290 (1995). (10.1083/jcb.131.5.1275) / J. Cell Biol. by G Gurland (1995)
  14. Kreitzer, G., Liao, G. & Gundersen, G.G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 10, 1105–1118 (1999). (10.1091/mbc.10.4.1105) / Mol. Biol. Cell by G Kreitzer (1999)
  15. Schuyler, S.C. & Pellman, D. Microtubule “plus-end-tracking proteins”: The end is just the beginning. Cell 105, 421–424 (2001). (10.1016/S0092-8674(01)00364-6) / Cell by SC Schuyler (2001)
  16. Kohno, H., Tanaka, K., Mino, A., Umikawa, M. & Takai, Y. Bni1 implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in S. cerevisiae. EMBO J. 15, 6060–6068 (1996). (10.1002/j.1460-2075.1996.tb00994.x) / EMBO J. by H Kohno (1996)
  17. Lee, L., Klee, S.K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae Formin Bni1p. J. Cell Biol. 144, 947–961 (1999). (10.1083/jcb.144.5.947) / J. Cell Biol. by L Lee (1999)
  18. Adames, N.R. & Cooper, J.A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863–874 (2000). (10.1083/jcb.149.4.863) / J. Cell Biol. by NR Adames (2000)
  19. Bloom, K. It's a kar9ochore to capture microtubules. Nature Cell Biol. 2, E96–E98 (2000). (10.1038/35014089) / Nature Cell Biol. by K Bloom (2000)
  20. Schuyler, S.C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci. 114, 247–255 (2001). (10.1242/jcs.114.2.247) / J. Cell Sci. by SC Schuyler (2001)
  21. Kusch, J., Liakopoulos, D. & Barral, Y. Spindle asymmetry: a compass for the cell. Trends Cell Biol. 13, 562–569 (2003). (10.1016/j.tcb.2003.09.008) / Trends Cell Biol. by J Kusch (2003)
  22. Yin, H., Pruyne, D., Huffaker, T.C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015 (2000). (10.1038/35023024) / Nature by H Yin (2000)
  23. Beach, D.L., Thibodeaux, J., Maddox, P., Yeh, E. & Bloom, K. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr. Biol. 10, 1497–1506 (2000). (10.1016/S0960-9822(00)00837-X) / Curr. Biol. by DL Beach (2000)
  24. Su, L.K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2971–2977 (1995). / Cancer Res. by LK Su (1995)
  25. Bienz, M. Spindles cotton on to junctions, APC and EB1. Nature Cell Biol. 3, E67–E68 (2001). (10.1038/35060140) / Nature Cell Biol. by M Bienz (2001)
  26. Munemitsu, S. et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 54, 3676–3681 (1994). / Cancer Res. by S Munemitsu (1994)
  27. Berrueta, L. et al. The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc. Natl Acad. Sci. USA 95, 10596–10601 (1998). (10.1073/pnas.95.18.10596) / Proc. Natl Acad. Sci. USA by L Berrueta (1998)
  28. Zumbrunn, J., Kinoshita, K., Hyman, A.A. & Nathke, I.S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol. 11, 44–49 (2001). (10.1016/S0960-9822(01)00002-1) / Curr. Biol. by J Zumbrunn (2001)
  29. Askham, J.M., Vaughan, K.T., Goodson, H.V. & Morrison, E.E. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13, 3627–3645 (2002). (10.1091/mbc.e02-01-0061) / Mol. Biol. Cell by JM Askham (2002)
  30. Ligon, L.A., Shelly, S.S., Tokito, M. & Holzbaur, E.L. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol. Biol. Cell 14, 1405–1417 (2003). (10.1091/mbc.e02-03-0155) / Mol. Biol. Cell by LA Ligon (2003)
  31. Gundersen, G.G. Evolutionary conservation of microtubule-capture mechanisms. Nature Rev. Mol. Cell Biol. 3, 296–304 (2002). (10.1038/nrm777) / Nature Rev. Mol. Cell Biol. by GG Gundersen (2002)
  32. Berrueta, L., Tirnauer, J.S., Schuyler, S.C., Pellman, D. & Bierer, B.E. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol. 9, 425–428 (1999). (10.1016/S0960-9822(99)80190-0) / Curr. Biol. by L Berrueta (1999)
  33. Tirnauer, J.S., O'Toole, E., Berrueta, L., Bierer, B.E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999). (10.1083/jcb.145.5.993) / J. Cell Biol. by JS Tirnauer (1999)
  34. Rogers, S.L., Rogers, G.C., Sharp, D.J. & Vale, R.D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002). (10.1083/jcb.200202032) / J. Cell Biol. by SL Rogers (2002)
  35. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000). (10.1016/S0960-9822(00)00600-X) / Curr. Biol. by Y Mimori-Kiyosue (2000)
  36. Alberts, A.S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001). (10.1074/jbc.M006205200) / J. Biol. Chem. by AS Alberts (2001)
  37. Palazzo, A.F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11, 1536–1541 (2001). (10.1016/S0960-9822(01)00475-4) / Curr. Biol. by AF Palazzo (2001)
  38. Askham, J.M., Moncur, P., Markham, A.F. & Morrison, E.E. Regulation and function of the interaction between the APC tumour suppressor protein and EB1. Oncogene 19, 1950–1958 (2000). (10.1038/sj.onc.1203498) / Oncogene by JM Askham (2000)
  39. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002). (10.1016/S0092-8674(02)00800-0) / Cell by M Fukata (2002)
  40. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999). (10.1038/11056) / Nature Cell Biol. by N Watanabe (1999)
  41. Wallar, B.J. & Alberts, A.S. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol. 13, 435–446 (2003). (10.1016/S0962-8924(03)00153-3) / Trends Cell Biol. by BJ Wallar (2003)
  42. Yasuda, S. et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428, 767–771 (2004). (10.1038/nature02452) / Nature by S Yasuda (2004)
  43. Nakamura, M., Zhou, X.Z., Kishi, S. & Lu, K.P. Involvement of the telomeric protein Pin2/TRF1 in the regulation of the mitotic spindle. FEBS Lett. 514, 193–198 (2002). (10.1016/S0014-5793(02)02363-3) / FEBS Lett. by M Nakamura (2002)
  44. Subramanian, A. et al. Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction. Curr. Biol. 13, 1086–1095 (2003). (10.1016/S0960-9822(03)00416-0) / Curr. Biol. by A Subramanian (2003)
  45. Leung, C.L., Sun, D., Zheng, M., Knowles, D.R. & Liem, R.K. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J. Cell Biol. 147, 1275–1286 (1999). (10.1083/jcb.147.6.1275) / J. Cell Biol. by CL Leung (1999)
  46. Karakesisoglou, I., Yang, Y. & Fuchs, E. An epidermal plakin that integrates actin and microtubule networks at cellular junctions. J. Cell Biol. 149, 195–208 (2000). (10.1083/jcb.149.1.195) / J. Cell Biol. by I Karakesisoglou (2000)
  47. Sun, D., Leung, C.L. & Liem, R.K. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J. Cell Sci. 114, 161–172 (2001). (10.1242/jcs.114.1.161) / J. Cell Sci. by D Sun (2001)
  48. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7. An essential integrator of microtubule dynamics. Cell 115, 343–354 (2003). (10.1016/S0092-8674(03)00813-4) / Cell by A Kodama (2003)
  49. Evangelista, M., Zigmond, S. & Boone, C. Formins: signaling effectors for assembly and polarization of actin filaments. J. Cell Sci. 116, 2903–2911 (2003). (10.1242/jcs.00611) / J. Cell Sci. by M Evangelista (2003)
  50. Elbashir, S.M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002). (10.1016/S1046-2023(02)00023-3) / Methods by SM Elbashir (2002)
Dates
Type When
Created 21 years ago (Aug. 15, 2004, 1:12 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 3:24 p.m.)
Indexed 5 days, 23 hours ago (Aug. 28, 2025, 8:28 a.m.)
Issued 21 years ago (Aug. 15, 2004)
Published 21 years ago (Aug. 15, 2004)
Published Online 21 years ago (Aug. 15, 2004)
Published Print 21 years ago (Sept. 1, 2004)
Funders 0

None

@article{Wen_2004, title={EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration}, volume={6}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/ncb1160}, DOI={10.1038/ncb1160}, number={9}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Wen, Ying and Eng, Christina H. and Schmoranzer, Jan and Cabrera-Poch, Noemi and Morris, Edward J. S. and Chen, Michael and Wallar, Bradley J. and Alberts, Arthur S. and Gundersen, Gregg G.}, year={2004}, month=aug, pages={820–830} }