Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Cramer, L. P. (2010). Forming the cell rear first: breaking cell symmetry to trigger directed cell migration. Nature Cell Biology, 12(7), 628–632.

Authors 1
  1. Louise P. Cramer (first)
References 40 Referenced 103
  1. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996). (10.1016/S0092-8674(00)81280-5) / Cell by DA Lauffenburger (1996)
  2. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996). (10.1016/S0092-8674(00)81281-7) / Cell by TJ Mitchison (1996)
  3. Sheetz, M. P., Felsenfeld, D., Galbraith, C. G. & Choquet, D. Cell migration as a five-step cycle. Biochem. Soc. Symp. 65, 233–243 (1999). / Biochem. Soc. Symp. by MP Sheetz (1999)
  4. Ridley, A. J. Rho GTPases and cell migration. J. Cell Sci. 114, 2713–2722 (2001). (10.1242/jcs.114.15.2713) / J. Cell Sci. by AJ Ridley (2001)
  5. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003). (10.1126/science.1092053) / Science by AJ Ridley (2003)
  6. Zigmond, S. H. & Sullivan, S. J. Sensory adaptation of leukocytes to chemotactic peptides. J. Cell Biol. 82, 517–527 (1979). (10.1083/jcb.82.2.517) / J. Cell Biol. by SH Zigmond (1979)
  7. Wong, K., Pertz, O., Hahn, K. & Bourne, H. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc. Natl Acad. Sci. USA 103, 3639–3644 (2006). (10.1073/pnas.0600092103) / Proc. Natl Acad. Sci. USA by K Wong (2006)
  8. Mseka, T., Bamburg, J. R. & Cramer, L. P. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J. Cell Sci. 120, 4332–4344 (2007). (10.1242/jcs.017640) / J. Cell Sci. by T Mseka (2007)
  9. Yam, P. T. et al. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178, 1207–1221 (2007). (10.1083/jcb.200706012) / J. Cell Biol. by PT Yam (2007)
  10. Chen, W. Surface changes during retraction-induced spreading of fibroblasts. J. Cell Sci. 49, 1–13 (1981). (10.1242/jcs.49.1.1) / J. Cell Sci. by W Chen (1981)
  11. Dunn, G. A. Mechanisms of fibroblast locomotion, in Cell Adhesion and Motility, 3rd BSCB Symposium (eds Curtis, A. S. G. & Pitts, J. D.) 409–423 (Cambridge Univ. Press, 1980). / Cell Adhesion and Motility, 3rd BSCB Symposium by GA Dunn (1980)
  12. Dunn, G. A. & Zicha, D. Dynamics of fibroblast spreading. J. Cell Sci. 108, 1239–1249 (1995). (10.1242/jcs.108.3.1239) / J. Cell Sci. by GA Dunn (1995)
  13. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999). (10.1016/S0960-9822(99)80042-6) / Curr. Biol. by AB Verkhovsky (1999)
  14. Mast, S. O. Structure, movement, locomotion, and stimulation in amoeba. J. Morph. Physiol. 41, 347–425 (1926). (10.1002/jmor.1050410205) / J. Morph. Physiol. by SO Mast (1926)
  15. Allen, R. D. & Taylor, D. L. The molecular basis of amoeboid movement, in Molecules and Cell Movement (eds. Inoue, S. & Stephens, R. E.) 239–258 (Raven, New York, 1975). / Molecules and Cell Movement by RD Allen (1975)
  16. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003). (10.1016/S0092-8674(03)00555-5) / Cell by J Xu (2003)
  17. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003). (10.1016/S0092-8674(03)00120-X) / Cell by TD Pollard (2003)
  18. Carlier, M. F. & Pantaloni, D. Control of actin assembly dynamics in cell motility. J. Biol. Chem. 282, 23005–23009 (2007). (10.1074/jbc.R700020200) / J. Biol. Chem. by MF Carlier (2007)
  19. Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008). (10.1038/nrm2453) / Nat. Rev. Mol. Cell Biol. by G Charras (2008)
  20. Niggli, V. Signaling to migration in neutrophils: importance of localised pathways. Intl. J. Biochem. Cell Biol. 35, 1619–1638 (2003). (10.1016/S1357-2725(03)00144-4) / Intl. J. Biochem. Cell Biol. by V Niggli (2003)
  21. Koehl, G. & McNally, J. G. Myosin II redistribution during rear retraction and the role of filament assembly and disassembly. Cell Biol. Internatl 26, 287–396 (2002). (10.1006/cbir.2001.0855) / Cell Biol. Internatl by G Koehl (2002)
  22. Vicente-Manzanares, M. et al. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007). (10.1083/jcb.200612043) / J. Cell Biol. by M Vicente-Manzanares (2007)
  23. Gutjahr, M. C., Rossy, J. & Niggli, V. Role of Rho, Rac, and Rho kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells. Exp. Cell Res. 308, 422–438 (2005). (10.1016/j.yexcr.2005.05.001) / Exp. Cell Res. by MC Gutjahr (2005)
  24. Vicente-Manzanares, M. et al. Segregation and activation of myosin IIB creates a rear in migrating cells. J. Cell Biol. 183, 543–554 (2008). (10.1083/jcb.200806030) / J. Cell Biol. by M Vicente-Manzanares (2008)
  25. Shutova, M. S., Alexandrova, A. Y. & Vasiliev, J., M. Regulation of polarity in cells devoid of actin bundle system after treatment with inhibitors of myosin II activity. Cell Motil. Cytoskeleton 65, 734–746 (2008). (10.1002/cm.20295) / Cell Motil. Cytoskeleton by MS Shutova (2008)
  26. Lo, C.-M. et al. Nonmuscle Myosin IIB is involved in the guidance of fibroblast migration. Mol. Biol. Cell 15, 982–989 (2004). (10.1091/mbc.e03-06-0359) / Mol. Biol. Cell by C-M Lo (2004)
  27. Bardi, G., Niggli, V. & Loetscher, P. Rho kinase is required for CCR7-mediated polarization and chemotaxis of T lymphocytes. FEBS Letts. 542, 79–83 (2003). (10.1016/S0014-5793(03)00351-X) / FEBS Letts. by G Bardi (2003)
  28. Cramer, L. P., Siebert, M. & Mitchison, T. J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell Biol. 136, 1287–1305 (1997). (10.1083/jcb.136.6.1287) / J. Cell Biol. by LP Cramer (1997)
  29. Swailes, N. T., Knight, P. J. & Peckham, M. Actin filament organization in aligned prefusion myoblasts. J. Anat. 205, 381–391 (2004). (10.1111/j.0021-8782.2004.00341.x) / J. Anat. by NT Swailes (2004)
  30. Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139, 397–415 (1997). (10.1083/jcb.139.2.397) / J. Cell Biol. by TM Svitkina (1997)
  31. Gardel, M. L. et al. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008). (10.1083/jcb.200810060) / J. Cell Biol. by ML Gardel (2008)
  32. Mseka, T., Coughlin, M. & Cramer, L. P. Graded actin filament polarity is the organization of oriented actomyosin II filament bundles required for fibroblast polarization. Cell Motil. Cytoskel. 66, 743–753 (2009). (10.1002/cm.20403) / Cell Motil. Cytoskel. by T Mseka (2009)
  33. Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005). (10.1016/j.cell.2005.02.022) / Cell by ER Gomes (2005)
  34. Zicha, D. et al. Rapid actin transport during cell protrusion. Science 300, 142–145 (2003). (10.1126/science.1082026) / Science by D Zicha (2003)
  35. Iwasaki, T. & Wang, Y.-L. Cytoplasmic force gradient in migrating adhesive cells. Biophys. J. 94, L35–L37 (2008). (10.1529/biophysj.107.124479) / Biophys. J. by T Iwasaki (2008)
  36. Keren, K. et al. Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol. 11, 1219–1225 (2009). (10.1038/ncb1965) / Nat. Cell Biol. by K Keren (2009)
  37. Cramer, L. P. Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr. Biol. 9, 1095–1105 (1999). (10.1016/S0960-9822(99)80478-3) / Curr. Biol. by LP Cramer (1999)
  38. Peckham, M. et al. Specific changes to the mechanism of cell locomotion induced by overexpression of β-actin. J. Cell Sci. 114, 1367–1377 (2001). (10.1242/jcs.114.7.1367) / J. Cell Sci. by M Peckham (2001)
  39. Blankenship, J. T. et al. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006). (10.1016/j.devcel.2006.09.007) / Dev. Cell by JT Blankenship (2006)
  40. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004). (10.1038/nature02590) / Nature by C Bertet (2004)
Dates
Type When
Created 15 years, 1 month ago (July 1, 2010, 11:54 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 3:17 p.m.)
Indexed 3 weeks, 4 days ago (Aug. 3, 2025, 6:51 p.m.)
Issued 15 years, 1 month ago (July 1, 2010)
Published 15 years, 1 month ago (July 1, 2010)
Published Print 15 years, 1 month ago (July 1, 2010)
Funders 0

None

@article{Cramer_2010, title={Forming the cell rear first: breaking cell symmetry to trigger directed cell migration}, volume={12}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/ncb0710-628}, DOI={10.1038/ncb0710-628}, number={7}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Cramer, Louise P.}, year={2010}, month=jul, pages={628–632} }