Crossref journal-article
Springer Science and Business Media LLC
Nature Biotechnology (297)
Bibliography

Perez, E. E., Wang, J., Miller, J. C., Jouvenot, Y., Kim, K. A., Liu, O., Wang, N., Lee, G., Bartsevich, V. V., Lee, Y.-L., Guschin, D. Y., Rupniewski, I., Waite, A. J., Carpenito, C., Carroll, R. G., S Orange, J., Urnov, F. D., Rebar, E. J., Ando, D., … June, C. H. (2008). Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 26(7), 808–816.

Authors 23
  1. Elena E Perez (first)
  2. Jianbin Wang (additional)
  3. Jeffrey C Miller (additional)
  4. Yann Jouvenot (additional)
  5. Kenneth A Kim (additional)
  6. Olga Liu (additional)
  7. Nathaniel Wang (additional)
  8. Gary Lee (additional)
  9. Victor V Bartsevich (additional)
  10. Ya-Li Lee (additional)
  11. Dmitry Y Guschin (additional)
  12. Igor Rupniewski (additional)
  13. Adam J Waite (additional)
  14. Carmine Carpenito (additional)
  15. Richard G Carroll (additional)
  16. Jordan S Orange (additional)
  17. Fyodor D Urnov (additional)
  18. Edward J Rebar (additional)
  19. Dale Ando (additional)
  20. Philip D Gregory (additional)
  21. James L Riley (additional)
  22. Michael C Holmes (additional)
  23. Carl H June (additional)
References 51 Referenced 851
  1. Deng, H.K. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996). (10.1038/381661a0) / Nature by HK Deng (1996)
  2. Alkhatib, G. et al. Cc Ckrs: A Rantes, Mip-1 Alpha, Mip-1 Beta Receptor As A Fusion Cofactor for Macrophage-Tropic HIV-1. Science 272, 1955–1958 (1996). (10.1126/science.272.5270.1955) / Science by G Alkhatib (1996)
  3. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996). (10.1016/S0092-8674(00)80110-5) / Cell by R Liu (1996)
  4. Samson, M. et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996). (10.1038/382722a0) / Nature by M Samson (1996)
  5. Huang, Y.X. et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat. Med. 2, 1240–1243 (1996). (10.1038/nm1196-1240) / Nat. Med. by YX Huang (1996)
  6. Lederman, M.M. et al. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306, 485–487 (2004). (10.1126/science.1099288) / Science by MM Lederman (2004)
  7. Mosier, D.E. et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J. Virol. 73, 3544–3550 (1999). (10.1128/JVI.73.5.3544-3550.1999) / J. Virol. by DE Mosier (1999)
  8. Fatkenheuer, G. et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat. Med. 11, 1170–1172 (2005). (10.1038/nm1319) / Nat. Med. by G Fatkenheuer (2005)
  9. Kuhmann, S.E. et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J. Virol. 78, 2790–2807 (2004). (10.1128/JVI.78.6.2790-2807.2004) / J. Virol. by SE Kuhmann (2004)
  10. Abad, J.L. et al. Novel interfering bifunctional molecules against the CCR5 coreceptor are efficient inhibitors of HIV-1 infection. Mol. Ther. 8, 475–484 (2003). (10.1016/S1525-0016(03)00202-8) / Mol. Ther. by JL Abad (2003)
  11. Bai, J.R. et al. Characterization of anti-CCR5 ribozyme-transduced CD34(+) hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol. Ther. 1, 244–254 (2000). (10.1006/mthe.2000.0038) / Mol. Ther. by JR Bai (2000)
  12. Barassi, C. et al. Induction of murine mucosal CCR5-reactive antibodies as an anti-human immunodeficiency virus strategy. J. Virol. 79, 6848–6858 (2005). (10.1128/JVI.79.11.6848-6858.2005) / J. Virol. by C Barassi (2005)
  13. Levine, B.L. et al. Adoptive transfer of costimulated CD4(+) T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat. Med. 8, 47–53 (2002). (10.1038/nm0102-47) / Nat. Med. by BL Levine (2002)
  14. Qin, X.F., An, D.S., Chen, I.S.Y. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA 100, 183–188 (2003). (10.1073/pnas.232688199) / Proc. Natl. Acad. Sci. USA by XF Qin (2003)
  15. Steinberger, P., Andris-Widhopf, J., Buhler, B., Torbett, B.E. & Barbas, C.F. Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc. Natl. Acad. Sci. USA 97, 805–810 (2000). (10.1073/pnas.97.2.805) / Proc. Natl. Acad. Sci. USA by P Steinberger (2000)
  16. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005). (10.1038/nature03556) / Nature by FD Urnov (2005)
  17. Moore, M., Choo, Y. & Klug, A. Design of polyzinc finger peptides with structured linkers. Proc. Natl. Acad. Sci. USA 98, 1432–1436 (2001). (10.1073/pnas.98.4.1432) / Proc. Natl. Acad. Sci. USA by M Moore (2001)
  18. Jamieson, A.C., Miller, J.C. & Pabo, C.O. Drug discovery with engineered zinc-finger proteins. Nat. Rev. Drug Discov. 2, 361–368 (2003). (10.1038/nrd1087) / Nat. Rev. Drug Discov. by AC Jamieson (2003)
  19. Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000). (10.1093/nar/28.17.3361) / Nucleic Acids Res. by J Smith (2000)
  20. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002). (10.1093/genetics/161.3.1169) / Genetics by M Bibikova (2002)
  21. Lloyd, A., Plaisier, C.L., Carroll, D. & Drews, G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis . Proc. Natl. Acad. Sci. USA 102, 2232–2237 (2005). (10.1073/pnas.0409339102) / Proc. Natl. Acad. Sci. USA by A Lloyd (2005)
  22. Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996). (10.1016/0168-9525(96)10019-6) / Trends Genet. by M Jasin (1996)
  23. Valerie, K. & Povirk, L.F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22, 5792–5812 (2003). (10.1038/sj.onc.1206679) / Oncogene by K Valerie (2003)
  24. Morner, A. et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol. 73, 2343–2349 (1999). (10.1128/JVI.73.3.2343-2349.1999) / J. Virol. by A Morner (1999)
  25. Schroers, R. et al. Gene transfer into human T lymphocytes and natural killer cells by Ad5/F35 chimeric adenoviral vectors. Exp. Hematol. 32, 536–546 (2004). (10.1016/j.exphem.2004.03.010) / Exp. Hematol. by R Schroers (2004)
  26. Hung, C.S., Vander Heyden, N. & Ratner, L. Analysis of the critical domain in the V3 loop of human immunodeficiency virus type 1 gp120 involved in CCR5 utilization. J. Virol. 73, 8216–8226 (1999). (10.1128/JVI.73.10.8216-8226.1999) / J. Virol. by CS Hung (1999)
  27. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001). (10.1128/MCB.21.1.289-297.2001) / Mol. Cell. Biol. by M Bibikova (2001)
  28. Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10570–10575 (1998). (10.1073/pnas.95.18.10570) / Proc. Natl. Acad. Sci. USA by J Bitinaite (1998)
  29. Schultz, L.B., Chehab, N.H., Malikzay, A. & Halazonetis, T.D. p53 Binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151, 1381–1390 (2000). (10.1083/jcb.151.7.1381) / J. Cell Biol. by LB Schultz (2000)
  30. Thiriet, C. & Hayes, J.J. Chromatin in need of a fix: Phosphorylation of H2AX connects chromatin to DNA repair. Mol. Cell 18, 617–622 (2005). (10.1016/j.molcel.2005.05.008) / Mol. Cell by C Thiriet (2005)
  31. Tsukuda, T., Fleming, A.B., Nickoloff, J.A. & Osley, M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae . Nature 438, 379–383 (2005). (10.1038/nature04148) / Nature by T Tsukuda (2005)
  32. Peters, W., Dupuis, M. & Charo, I.F. A mechanism for the impaired IFN-gamma production in C–C chemokine receptor 2 (CCR2) knockout mice: Role of CCR2 in linking the innate and adaptive immune responses. J. Immunol. 165, 7072–7077 (2000). (10.4049/jimmunol.165.12.7072) / J. Immunol. by W Peters (2000)
  33. Smith, M.W. et al. CCR2 chemokine receptor and AIDS progression. Nat. Med. 3, 1052–1053 (1997). (10.1038/nm1097-1052c) / Nat. Med. by MW Smith (1997)
  34. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005). (10.1038/nature03959) / Nature by M Margulies (2005)
  35. Watanabe, S. et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109, 212–218 (2007). (10.1182/blood-2006-04-017681) / Blood by S Watanabe (2007)
  36. An, D.S. et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc. Natl. Acad. Sci. USA 104, 13110–13115 (2007). (10.1073/pnas.0705474104) / Proc. Natl. Acad. Sci. USA by DS An (2007)
  37. Trkola, A. et al. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc. Natl. Acad. Sci. USA 99, 395–400 (2002). (10.1073/pnas.012519099) / Proc. Natl. Acad. Sci. USA by A Trkola (2002)
  38. Rossi, J.J., June, C.H. & Kohn, D.B. Genetic therapies against HIV. Nat. Biotechnol. 25, 1444–1454 (2007). (10.1038/nbt1367) / Nat. Biotechnol. by JJ Rossi (2007)
  39. Levine, B.L. et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA 103, 17372–17377 (2006). (10.1073/pnas.0608138103) / Proc. Natl. Acad. Sci. USA by BL Levine (2006)
  40. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999). (10.1038/44385) / Nature by F Sallusto (1999)
  41. Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S.G. Host-reactive CD8(+) memory stem cells in graft-versus-host disease. Nat. Med. 11, 1299–1305 (2005). (10.1038/nm1326) / Nat. Med. by Y Zhang (2005)
  42. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007). (10.1038/nbt1353) / Nat. Biotechnol. by A Lombardo (2007)
  43. Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotechnol. 19, 656–660 (2001). (10.1038/90264) / Nat. Biotechnol. by M Isalan (2001)
  44. Isalan, M. & Choo, Y. Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol. 340, 593–609 (2001). (10.1016/S0076-6879(01)40444-7) / Methods Enzymol. by M Isalan (2001)
  45. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003). (10.1126/science.1079512) / Science by M Bibikova (2003)
  46. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003). (10.1126/science.1078395) / Science by MH Porteus (2003)
  47. Smith, J., Berg, J.M. & Chandrasegaran, S. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res. 27, 674–681 (1999). (10.1093/nar/27.2.674) / Nucleic Acids Res. by J Smith (1999)
  48. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007). (10.1038/nbt1319) / Nat. Biotechnol. by JC Miller (2007)
  49. Nilsson, M. et al. Development of an adenoviral vector system with adenovirus serotype 35 tropism; efficient transient gene transfer into primary malignant hematopoietic cells. J. Gene Med. 6, 631–641 (2004). (10.1002/jgm.543) / J. Gene Med. by M Nilsson (2004)
  50. Lusso, P. et al. Growth of macrophage-tropic and primary human-immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. J. Virol. 69, 3712–3720 (1995). (10.1128/JVI.69.6.3712-3720.1995) / J. Virol. by P Lusso (1995)
  51. Morner, A. et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol. 73, 2343–2349 (1999). (10.1128/JVI.73.3.2343-2349.1999) / J. Virol. by A Morner (1999)
Dates
Type When
Created 17 years, 2 months ago (June 29, 2008, 1:07 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 3:55 p.m.)
Indexed 1 week ago (Aug. 31, 2025, 6:03 a.m.)
Issued 17 years, 2 months ago (June 29, 2008)
Published 17 years, 2 months ago (June 29, 2008)
Published Online 17 years, 2 months ago (June 29, 2008)
Published Print 17 years, 2 months ago (July 1, 2008)
Funders 0

None

@article{Perez_2008, title={Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases}, volume={26}, ISSN={1546-1696}, url={http://dx.doi.org/10.1038/nbt1410}, DOI={10.1038/nbt1410}, number={7}, journal={Nature Biotechnology}, publisher={Springer Science and Business Media LLC}, author={Perez, Elena E and Wang, Jianbin and Miller, Jeffrey C and Jouvenot, Yann and Kim, Kenneth A and Liu, Olga and Wang, Nathaniel and Lee, Gary and Bartsevich, Victor V and Lee, Ya-Li and Guschin, Dmitry Y and Rupniewski, Igor and Waite, Adam J and Carpenito, Carmine and Carroll, Richard G and S Orange, Jordan and Urnov, Fyodor D and Rebar, Edward J and Ando, Dale and Gregory, Philip D and Riley, James L and Holmes, Michael C and June, Carl H}, year={2008}, month=jun, pages={808–816} }