Crossref journal-article
Springer Science and Business Media LLC
Nature Biotechnology (297)
Authors 10
  1. Ximei Qian (first)
  2. Xiang-Hong Peng (additional)
  3. Dominic O Ansari (additional)
  4. Qiqin Yin-Goen (additional)
  5. Georgia Z Chen (additional)
  6. Dong M Shin (additional)
  7. Lily Yang (additional)
  8. Andrew N Young (additional)
  9. May D Wang (additional)
  10. Shuming Nie (additional)
References 57 Referenced 2,029
  1. Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004). (10.1038/nbt927) / Nat. Biotechnol. by P Alivisatos (2004)
  2. Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005). (10.1038/nrc1566) / Nat. Rev. Cancer by M Ferrari (2005)
  3. Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128–4158 (2001). (10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S) / Angew. Chem. Int. Ed. by CM Niemeyer (2001)
  4. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005). (10.1126/science.1104274) / Science by X Michalet (2005)
  5. Rosi, N.L. & Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005). (10.1021/cr030067f) / Chem. Rev. by NL Rosi (2005)
  6. Cao, Y.C., Jin, R.C. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002). (10.1126/science.297.5586.1536) / Science by YC Cao (2002)
  7. Gao, X. et al. In-vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005). (10.1016/j.copbio.2004.11.003) / Curr. Opin. Biotechnol. by X Gao (2005)
  8. Nie, S.M., Xing, Y., Kim, G.J. & Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288 (2007). (10.1146/annurev.bioeng.9.060906.152025) / Annu. Rev. Biomed. Eng. by SM Nie (2007)
  9. Yezhelyev, M.V. et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 7, 657–667 (2006). (10.1016/S1470-2045(06)70793-8) / Lancet Oncol. by MV Yezhelyev (2006)
  10. Gao, X., Cui, Y.Y., Levenson, R.M., Chung, L.W.K. & Nie, S.M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004). (10.1038/nbt994) / Nat. Biotechnol. by X Gao (2004)
  11. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007). (10.1038/nnano.2006.170) / Nat. Nanotechnol. by Z Liu (2007)
  12. Weissleder, R., Kelly, K., Sun, E.Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418–1423 (2005). (10.1038/nbt1159) / Nat. Biotechnol. by R Weissleder (2005)
  13. Lee, E.S., Na, K. & Bae, Y.H. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release 91, 103–113 (2003). (10.1016/S0168-3659(03)00239-6) / J. Control. Release by ES Lee (2003)
  14. Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 24, 1–16 (2007). (10.1007/s11095-006-9132-0) / Pharm. Res. by VP Torchilin (2007)
  15. Moghimi, S.M., Hunter, A.C. & Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283–318 (2001). (10.1016/S0031-6997(24)01494-7) / Pharmacol. Rev. by SM Moghimi (2001)
  16. Couvreur, P. & Vauthier, C. Nanotechnology: Intelligent design to treat complex diseases. Pharm. Res. 23, 1417–1450 (2006). (10.1007/s11095-006-0284-8) / Pharm. Res. by P Couvreur (2006)
  17. Duncan, R. Polymer conjugate as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006). (10.1038/nrc1958) / Nat. Rev. Cancer by R Duncan (2006)
  18. Hood, J.D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407 (2002). (10.1126/science.1070200) / Science by JD Hood (2002)
  19. Harisinghani, M.G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003). (10.1056/NEJMoa022749) / N. Engl. J. Med. by MG Harisinghani (2003)
  20. McCarthy, J.R., Kelly, K.A., Sun, E.Y. & Weissleder, R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2, 153–167 (2007). (10.2217/17435889.2.2.153) / Nanomedicine by JR McCarthy (2007)
  21. Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor QDs. Nat. Biotechnol. 21, 41–46 (2003). (10.1038/nbt764) / Nat. Biotechnol. by X Wu (2003)
  22. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004). (10.1038/nbt920) / Nat. Biotechnol. by S Kim (2004)
  23. Rhyner, M.N. et al. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1, 209–217 (2006). (10.2217/17435889.1.2.209) / Nanomedicine by MN Rhyner (2006)
  24. Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007). (10.1038/nprot.2007.107) / Nat. Protoc. by Y Xing (2007)
  25. Woodle, M.C. & Lu, P.Y. Nanoparticles deliver RNAi therapy. NanoToday, 34–41 (8/2005). (10.1016/S1369-7021(05)71035-X)
  26. Medarova, Z., Pham, W., Farrar, C., Petkova, V. & Moore, A. In-vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13, 372–377 (2007). (10.1038/nm1486) / Nat. Med. by Z Medarova (2007)
  27. Merchant, B. Gold, the noble metal and the paradoxes of its toxicology. Biologicals 26, 49–59 (1998). (10.1006/biol.1997.0123) / Biologicals by B Merchant (1998)
  28. Root, S.W., Andrews, G.A., Kniseley, R.M. & Tyor, M.P. The distribution and radiation effects of intravenously administered colloidal gold-198 in man. Cancer 7, 856–866 (1954). (10.1002/1097-0142(195409)7:5<856::AID-CNCR2820070506>3.0.CO;2-A) / Cancer by SW Root (1954)
  29. Paciotti, G.F., Kingston, D.G.I. & Tamarkin, L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. 67, 47–54 (2006). (10.1002/ddr.20066) / Drug Dev. Res. by GF Paciotti (2006)
  30. Paciotti, G.F. et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169–183 (2004). (10.1080/10717540490433895) / Drug Deliv. by GF Paciotti (2004)
  31. James, W.D., Hirsch, L.R., West, J.L., O'Neal, P.D. & Payne, J.D. Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J. Radioanal. Nucl. Chem. 271, 455–459 (2007). (10.1007/s10967-007-0230-1) / J. Radioanal. Nucl. Chem. by WD James (2007)
  32. Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J. & Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005). (10.1002/smll.200400093) / Small by EE Connor (2005)
  33. Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644–10654 (2005). (10.1021/la0513712) / Langmuir by R Shukla (2005)
  34. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R. & Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957–2976 (1999). (10.1021/cr980133r) / Chem. Rev. by K Kneipp (1999)
  35. Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998). (10.1039/a827241z) / Chem. Soc. Rev. by A Campion (1998)
  36. Nie, S.M. & Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997). (10.1126/science.275.5303.1102) / Science by SM Nie (1997)
  37. Kneipp, K. et al. Single molecule detection using surface enhanced Raman scattering. Phys. Rev. Lett. 78, 1667–1670 (1997). (10.1103/PhysRevLett.78.1667) / Phys. Rev. Lett. by K Kneipp (1997)
  38. Michaels, A.M., Nirmal, M. & Brus, L.E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939 (1999). (10.1021/ja992128q) / J. Am. Chem. Soc. by AM Michaels (1999)
  39. Tian, J.H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006). (10.1021/ja0648615) / J. Am. Chem. Soc. by JH Tian (2006)
  40. Moore, B.D. et al. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat. Biotechnol. 22, 1133–1138 (2004). (10.1038/nbt1003) / Nat. Biotechnol. by BD Moore (2004)
  41. Krug, J.T., Wang, G.D., Emory, S.R. & Nie, S.M. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J. Am. Chem. Soc. 121, 9208–9214 (1999). (10.1021/ja992058n) / J. Am. Chem. Soc. by JT Krug (1999)
  42. Doering, W.E. & Nie, S.M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 75, 6171–6176 (2003). (10.1021/ac034672u) / Anal. Chem. by WE Doering (2003)
  43. Paez, J.G. et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004). (10.1126/science.1099314) / Science by JG Paez (2004)
  44. Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004). (10.1056/NEJMoa040938) / N. Engl. J. Med. by TJ Lynch (2004)
  45. Mahmood, U. & Weissleder, R. Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther. 2, 489–496 (2003). / Mol. Cancer Ther. by U Mahmood (2003)
  46. Wuelfing, W.P., Gross, S.M., Miles, D.T. & Murray, R.W. Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J. Am. Chem. Soc. 120, 12696–12697 (1998). (10.1021/ja983183m) / J. Am. Chem. Soc. by WP Wuelfing (1998)
  47. Jiang, J.D., Burstein, E. & Kobayashi, H. Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface — Evidence for a charge-transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986). (10.1103/PhysRevLett.57.1793) / Phys. Rev. Lett. by JD Jiang (1986)
  48. Gobin, A.M. et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007). (10.1021/nl070610y) / Nano Lett. by AM Gobin (2007)
  49. Herbst, R.S. & Shin, D.M. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors — A new paradigm for cancer therapy. Cancer 94, 1593–1611 (2002). (10.1002/cncr.10372) / Cancer by RS Herbst (2002)
  50. Reuter, C.W.M., Morgan, M.A. & Eckardt, A. Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. Br. J. Cancer 96, 408–416 (2007). (10.1038/sj.bjc.6603566) / Br. J. Cancer by CWM Reuter (2007)
  51. Ntziachristos, V., Bremer, C. & Weissleder, R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208 (2003). (10.1007/s00330-002-1524-x) / Eur. Radiol. by V Ntziachristos (2003)
  52. Jain, R.K. Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng. 1, 241–263 (1999). (10.1146/annurev.bioeng.1.1.241) / Annu. Rev. Biomed. Eng. by RK Jain (1999)
  53. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986). / Cancer Res. by Y Matsumura (1986)
  54. Huang, X., El-Sayed, I.H., Qian, W. & El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006). (10.1021/ja057254a) / J. Am. Chem. Soc. by X Huang (2006)
  55. Zhang, H.F., Maslov, K., Stoica, G. & Wang, L.H.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006). (10.1038/nbt1220) / Nat. Biotechnol. by HF Zhang (2006)
  56. Ntziachristos, V., Ripoll, J., Wang, L.H.V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005). (10.1038/nbt1074) / Nat. Biotechnol. by V Ntziachristos (2005)
  57. Hirsch, L.R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003). (10.1073/pnas.2232479100) / Proc. Natl. Acad. Sci. USA by LR Hirsch (2003)
Dates
Type When
Created 17 years, 8 months ago (Dec. 23, 2007, 1:36 p.m.)
Deposited 7 months, 1 week ago (Jan. 24, 2025, 2:44 p.m.)
Indexed 3 days ago (Aug. 30, 2025, 1:18 p.m.)
Issued 17 years, 8 months ago (Dec. 23, 2007)
Published 17 years, 8 months ago (Dec. 23, 2007)
Published Online 17 years, 8 months ago (Dec. 23, 2007)
Published Print 17 years, 8 months ago (Jan. 1, 2008)
Funders 0

None

@article{Qian_2007, title={In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags}, volume={26}, ISSN={1546-1696}, url={http://dx.doi.org/10.1038/nbt1377}, DOI={10.1038/nbt1377}, number={1}, journal={Nature Biotechnology}, publisher={Springer Science and Business Media LLC}, author={Qian, Ximei and Peng, Xiang-Hong and Ansari, Dominic O and Yin-Goen, Qiqin and Chen, Georgia Z and Shin, Dong M and Yang, Lily and Young, Andrew N and Wang, May D and Nie, Shuming}, year={2007}, month=dec, pages={83–90} }