Crossref
journal-article
Springer Science and Business Media LLC
Nature Biotechnology (297)
References
124
Referenced
1,089
- Baneyx, F. Protein expression technologies: current status and future trends (Horizon Biosciences, Norfolk, 2004). / Protein expression technologies: current status and future trends by F Baneyx (2004)
-
Lorimer, G.H. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J. 10, 5–9 (1996).
(
10.1096/fasebj.10.1.8566548
) / FASEB J. by GH Lorimer (1996) -
Ellis, R.J. & Minton, A.P. Join the crowd. Nature 425, 27–28 (2003).
(
10.1038/425027a
) / Nature by RJ Ellis (2003) -
Valax, P. & Georgiou, G. Molecular characterization of β-lactamase inclusion bodies produced in Escherichia coli. 1. Composition. Biotechnol. Prog. 9, 539–547 (1993).
(
10.1021/bp00023a014
) / Biotechnol. Prog. by P Valax (1993) -
Allen, S.P., Polazzi, J.O., Gierse, J.K. & Easton, A.M. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938–6947 (1992).
(
10.1128/JB.174.21.6938-6947.1992
) / J. Bacteriol. by SP Allen (1992) -
Carrió, M.M., Corchero, J.L. & Villaverde, A. Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol. Lett. 169, 9–15 (1998).
(
10.1016/S0378-1097(98)00444-3
) / FEMS Microbiol. Lett. by MM Carrió (1998) - Bowden, G.A., Paredes, A.M. & Georgiou, G. Structure and morphology of inclusion bodies in Escherichia coli. Bio/Technology 9, 725–730 (1991). / Bio/Technology by GA Bowden (1991)
- Taylor, G., Hoare, M., Gray, D.R. & Martson, F.A.O. Size and density of inclusion bodies. Bio/Technology 4, 553–557 (1986). / Bio/Technology by G Taylor (1986)
-
Oberg, K., Chrunyk, B.A., Wetzel, R. & Fink, A.L. Nativelike secondary structure in interleukin 1-β inclusion bodies by attenuated total reflectance FTIR. Biochemistry 33, 2628–2634 (1994).
(
10.1021/bi00175a035
) / Biochemistry by K Oberg (1994) -
Tsumoto, K., Ejima, D., Kumagai, I. & Arakawa, T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28, 1–8 (2003).
(
10.1016/S1046-5928(02)00641-1
) / Protein Expr. Purif. by K Tsumoto (2003) -
Hoffmann, F. & Rinas, U. Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Biotechnol. Prog. 16, 1000–1007 (2000).
(
10.1021/bp0000959
) / Biotechnol. Prog. by F Hoffmann (2000) -
Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).
(
10.1126/science.1068408
) / Science by FU Hartl (2002) - Mujacic, M. & Baneyx, F. in Protein expression technologies: current status and future trends. (ed. Baneyx, F.) 85–148 (Horizon Biosciences, Norfolk, UK, 2004). / Protein expression technologies: current status and future trends by M Mujacic (2004)
-
Patzelt, H. et al. Binding specificity of Escherichia coli trigger factor. Proc. Natl. Acad. Sci. USA 98, 14244–14249 (2001).
(
10.1073/pnas.261432298
) / Proc. Natl. Acad. Sci. USA by H Patzelt (2001) -
Deuerling, E. et al. Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol. Microbiol. 47, 1317–1328 (2003).
(
10.1046/j.1365-2958.2003.03370.x
) / Mol. Microbiol. by E Deuerling (2003) -
Ewalt, K.L., Hendrick, J.P., Houry, W.A. & Hartl, F.U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90, 491–500 (1997).
(
10.1016/S0092-8674(00)80509-7
) / Cell by KL Ewalt (1997) -
Narberhaus, F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66, 64–93 (2002).
(
10.1128/MMBR.66.1.64-93.2002
) / Microbiol. Mol. Biol. Rev. by F Narberhaus (2002) -
Shearstone, J.R. & Baneyx, F. Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J. Biol. Chem. 274, 9937–9945 (1999).
(
10.1074/jbc.274.15.9937
) / J. Biol. Chem. by JR Shearstone (1999) -
Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032–11037 (1998).
(
10.1074/jbc.273.18.11032
) / J. Biol. Chem. by L Veinger (1998) -
Graf, P.C. & Jakob, U. Redox-regulated molecular chaperones. Cell. Mol. Life Sci. 59, 1624–1631 (2002).
(
10.1007/PL00012489
) / Cell. Mol. Life Sci. by PC Graf (2002) -
Hoffmann, J.H., Linke, K., Graf, P.C., Lilie, H. & Jakob, U. Identification of a redox-regulated chaperone network. EMBO J. 23, 160–168 (2004).
(
10.1038/sj.emboj.7600016
) / EMBO J. by JH Hoffmann (2004) -
Malki, A., Kern, R., Abdallah, J. & Richarme, G. Characterization of the Escherichia coli YedU protein as a molecular chaperone. Biochem. Biophys. Res. Commun. 301, 430–436 (2003).
(
10.1016/S0006-291X(02)03053-X
) / Biochem. Biophys. Res. Commun. by A Malki (2003) -
Sastry, M.S.R., Korotkov, K., Brodsky, Y. & Baneyx, F. Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J. Biol. Chem. 277, 46026–46034 (2002).
(
10.1074/jbc.M205800200
) / J. Biol. Chem. by MSR Sastry (2002) -
Mujacic, M., Bader, M.W. & Baneyx, F. Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe thermal stress conditions. Mol. Microbiol. 51, 849–859 (2004).
(
10.1046/j.1365-2958.2003.03871.x
) / Mol. Microbiol. by M Mujacic (2004) -
Quigley, P.M., Korotkov, K., Baneyx, F. & Hol, W.G.J. The 1.6-Å crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc. Natl. Acad. Sci. USA 100, 3137–3142 (2003).
(
10.1073/pnas.0530312100
) / Proc. Natl. Acad. Sci. USA by PM Quigley (2003) -
Quigley, P.M., Korotkov, K., Baneyx, F. & Hol, W.G.J. A new native EcHsp31 crystal structure suggests key role of structural flexibility for chaperone function. Protein Sci. 13, 269–277 (2004).
(
10.1110/ps.03399604
) / Protein Sci. by PM Quigley (2004) -
Sastry, M.S.R., Quigley, P.M., Hol, W.G.J. & Baneyx, F. The linker-loop region of E. coli chaperone Hsp31 functions as a thermal gate that modulates high affinity substrate binding at elevated temperatures. Proc. Natl. Acad. Sci. USA 101, 8587–8592 (2004).
(
10.1073/pnas.0403033101
) / Proc. Natl. Acad. Sci. USA by MSR Sastry (2004) -
Weibezahn, J., Bukau, B. & Mogk, A. Unscrambling an egg: protein disaggregation by AAA+ proteins. Microb. Cell Fact. 3, 1 (2004).
(
10.1186/1475-2859-3-1
) / Microb. Cell Fact. by J Weibezahn (2004) -
Lee, S. et al. The structure of ClpB. A molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).
(
10.1016/S0092-8674(03)00807-9
) / Cell by S Lee (2003) -
Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11, 607–615 (2004).
(
10.1038/nsmb787
) / Nat. Struct. Mol. Biol. by C Schlieker (2004) -
Mogk, A., Deuerling, E., Vorderwulbecke, S., Vierling, E. & Bukau, B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50, 585–595 (2003).
(
10.1046/j.1365-2958.2003.03710.x
) / Mol. Microbiol. by A Mogk (2003) -
Goloubinoff, P., Mogk, A., Ben Zvi, A.P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).
(
10.1073/pnas.96.24.13732
) / Proc. Natl. Acad. Sci. USA by P Goloubinoff (1999) -
Zolkiewski, M. ClpB cooperates with DnaK, DnaJ and GrpE in suppressing protein aggregation. J. Biol. Chem. 274, 28083–28086 (1999).
(
10.1074/jbc.274.40.28083
) / J. Biol. Chem. by M Zolkiewski (1999) -
Diamant, S., Ben-Zvi, A.P., Bukau, B. & Goloubinoff, P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275, 21107–21113 (2000).
(
10.1074/jbc.M001293200
) / J. Biol. Chem. by S Diamant (2000) -
Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. (in the press) (2004).
(
10.1074/jbc.M402405200
) -
de Keyzer, J., van der Does, C. & Driessen, A.J. The bacterial translocase: a dynamic protein channel complex. Cell. Mol. Life Sci. 60, 2034–2052 (2003).
(
10.1007/s00018-003-3006-y
) / Cell. Mol. Life Sci. by J de Keyzer (2003) -
Xu, Z., Knafels, J.D. & Yoshino, K. Crystal structure of the bacterial protein export chaperone SecB. Nat. Struct. Biol. 7, 1172–1177 (2000).
(
10.1038/82040
) / Nat. Struct. Biol. by Z Xu (2000) -
Altman, E., Kumamoto, C.A. & Emr, S.D. Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J. 10, 239–245 (1991).
(
10.1002/j.1460-2075.1991.tb07943.x
) / EMBO J. by E Altman (1991) -
Harms, N., Luirink, J. & Oudega, B. in Molecular chaperones in the cell (ed. Lund, P.) 35–60 (Oxford University Press, New York, 2001).
(
10.1093/oso/9780199638680.003.0002
) / Molecular chaperones in the cell by N Harms (2001) -
Driessen, A.J.M., Manting, E.H. & van der Does, C. The structural basis of protein targeting and translocation in bacteria. Nat. Struct. Biol. 8, 492–498 (2001).
(
10.1038/88549
) / Nat. Struct. Biol. by AJM Driessen (2001) -
Buskiewicz, I. et al. Trigger factor binds to ribosome-signal recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc. Natl. Acad. Sci. USA 101, 7902–7906 (2004).
(
10.1073/pnas.0402231101
) / Proc. Natl. Acad. Sci. USA by I Buskiewicz (2004) -
DeLisa, M.P., Samuelson, P., Palmer, T. & Georgiou, G. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J. Biol. Chem. 277, 29825–29831 (2002).
(
10.1074/jbc.M201956200
) / J. Biol. Chem. by MP DeLisa (2002) - Brüser, T. & Sanders, C. An alternative model of the twin arginine translocation system. Mircobiol. Res. 158, 7–17 (2003). / Mircobiol. Res. by T Brüser (2003)
-
Palmer, T. & Berks, B.C. Moving folded protein across the bacterial cell membrane. Microbiology 149, 547–556 (2003).
(
10.1099/mic.0.25900-0
) / Microbiology by T Palmer (2003) -
Sargent, F. et al. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J. 17, 3640–3650 (1998).
(
10.1093/emboj/17.13.3640
) / EMBO J. by F Sargent (1998) -
Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294 (1996).
(
10.1111/j.1365-2958.1996.tb02473.x
) / Mol. Microbiol. by R Chen (1996) -
Schafer, U., Beck, K. & Muller, M. Skp, a molecular chaperone of gram-negative bacteria is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).
(
10.1074/jbc.274.35.24567
) / J. Biol. Chem. by U Schafer (1999) -
Walton, T.A. & Sousa, M.C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).
(
10.1016/j.molcel.2004.07.023
) / Mol. Cell by TA Walton (2004) -
Missiakas, D., Betton, J.M. & Raina, S. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21, 871–884 (1996).
(
10.1046/j.1365-2958.1996.561412.x
) / Mol. Microbiol. by D Missiakas (1996) -
Arie, J.P., Sassoon, N. & Betton, J.M. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39, 199–210 (2001).
(
10.1046/j.1365-2958.2001.02250.x
) / Mol. Microbiol. by JP Arie (2001) -
Saul, F.A. et al. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J. Mol. Biol. 335, 595–608 (2004).
(
10.1016/j.jmb.2003.10.056
) / J. Mol. Biol. by FA Saul (2004) -
Behrens, S., Maier, R., de Cock, H., Schmid, F.X. & Gross, C.A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20, 285–294 (2001).
(
10.1093/emboj/20.1.285
) / EMBO J. by S Behrens (2001) -
Bitto, E. & McKay, D.B. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10, 1489–1498 (2002).
(
10.1016/S0969-2126(02)00877-8
) / Structure by E Bitto (2002) -
Bitto, E. & McKay, D.B. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 278, 49316–49322 (2003).
(
10.1074/jbc.M308853200
) / J. Biol. Chem. by E Bitto (2003) -
Hiniker, A. & Bardwell, J.C.A. Disulfide bond isomerization in prokaryotes. Biochemistry 42, 1179–1185 (2003).
(
10.1021/bi027141t
) / Biochemistry by A Hiniker (2003) -
Kadokura, H., Katzen, F. & Beckwith, J. Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111–135 (2003).
(
10.1146/annurev.biochem.72.121801.161459
) / Annu. Rev. Biochem. by H Kadokura (2003) -
McCarthy, A.A. et al. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat. Struct. Biol. 7, 196–199 (2000).
(
10.1038/73295
) / Nat. Struct. Biol. by AA McCarthy (2000) -
Missiakas, D., Schwager, F., Betton, J.M., Georgopoulos, C. & Raina, S. Identification and characterization of HslV HslU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 15, 6899–6909 (1996).
(
10.1002/j.1460-2075.1996.tb01082.x
) / EMBO J. by D Missiakas (1996) -
Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P. & Bukau, B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397–413 (2001).
(
10.1046/j.1365-2958.2001.02383.x
) / Mol. Microbiol. by T Tomoyasu (2001) -
Matouschek, A. Protein unfolding—an important process in vivo? Curr. Opin. Struct. Biol. 13, 98–109 (2003).
(
10.1016/S0959-440X(03)00010-1
) / Curr. Opin. Struct. Biol. by A Matouschek (2003) -
Kim, Y.-I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230–233 (2001).
(
10.1038/84967
) / Nat. Struct. Biol. by Y-I Kim (2001) -
Ortega, J., Lee, H.S., Maurizi, M.R. & Steven, A.C. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. J. Struct. Biol. 146, 217–226 (2004).
(
10.1016/j.jsb.2003.11.023
) / J. Struct. Biol. by J Ortega (2004) -
Bochtler, M. et al. The structure of HslU and the ATP-dependent protease HslU-HslV. Nature 403, 800–805 (2000).
(
10.1038/35001629
) / Nature by M Bochtler (2000) -
Gottesman, S., Roche, E., Zhou, Y.N. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxyl-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).
(
10.1101/gad.12.9.1338
) / Genes Dev. by S Gottesman (1998) -
Dougan, D.A., Weber-Ban, E. & Bukau, B. Targeted delivery of an ssrA-tagged substrate by the protein SspB to it cognate AAA+ protein ClpX. Mol. Cell 12, 373–380 (2003).
(
10.1016/j.molcel.2003.08.012
) / Mol. Cell by DA Dougan (2003) -
Dougan, D.A., Reid, B.G., Horwich, A.L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).
(
10.1016/S1097-2765(02)00485-9
) / Mol. Cell by DA Dougan (2002) -
Saikawa, N. & Akiyama, Y. & Ito, K. FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J. Struct. Biol. 146, 123–129 (2004).
(
10.1016/j.jsb.2003.09.020
) / J. Struct. Biol. by N Saikawa (2004) -
Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).
(
10.1038/416455a
) / Nature by T Krojer (2002) -
Jones, C.H. et al. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J. Bacteriol. 184, 5762–5771 (2002).
(
10.1128/JB.184.20.5762-5771.2002
) / J. Bacteriol. by CH Jones (2002) -
Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).
(
10.1016/S0092-8674(00)80743-6
) / Cell by C Spiess (1999) -
Keiler, K.C. et al. C-terminal specific protein degradation: activity and substrate specificity of the Tsp protease. Protein Sci. 4, 1507–1515 (1995).
(
10.1002/pro.5560040808
) / Protein Sci. by KC Keiler (1995) -
Spiers, A. et al. PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tail-specific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide. J. Biol. Chem. 277, 39443–39449 (2002).
(
10.1074/jbc.M202790200
) / J. Biol. Chem. by A Spiers (2002) -
Walsh, N.P., Alba, B.M., Bose, B., Gross, C.A. & Sauer, R.T. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by Its PDZ domain. Cell 113, 61–71 (2003).
(
10.1016/S0092-8674(03)00203-4
) / Cell by NP Walsh (2003) -
Waller, P.R. & Sauer, R.T. Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J. Bacteriol. 178, 1146–1153 (1996).
(
10.1128/JB.178.4.1146-1153.1996
) / J. Bacteriol. by PR Waller (1996) -
Baneyx, F. & Georgiou, G. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high molecular weight substrates in vivo. J. Bacteriol. 173, 2696–2703 (1991).
(
10.1128/JB.173.8.2696-2703.1991
) / J. Bacteriol. by F Baneyx (1991) -
Vandeputte-Rutten, L. et al. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J. 20, 5033–5039 (2001).
(
10.1093/emboj/20.18.5033
) / EMBO J. by L Vandeputte-Rutten (2001) -
White, C.B., Chen, Q., Kenyon, G.L. & Babbitt, P.C. A novel activity of OmpT. Proteolysis under extreme denaturing conditions. J. Biol. Chem. 270, 12990–12994 (1995).
(
10.1074/jbc.270.22.12990
) / J. Biol. Chem. by CB White (1995) -
Khlebnikov, A., Datsenko, K.A., Skaug, T., Wanner, B.L. & Keasling, J.D. Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247 (2001).
(
10.1099/00221287-147-12-3241
) / Microbiology by A Khlebnikov (2001) -
Morgan-Kiss, R.M., Wadler, C. & Cronan, J.E.J. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Natl. Acad. Sci. USA 99, 7373–7377 (2002).
(
10.1073/pnas.122227599
) / Proc. Natl. Acad. Sci. USA by RM Morgan-Kiss (2002) -
Vasina, J.A. & Baneyx, F. Expression of aggregation-prone proteins at low temperatures: a comparative study of the E. coli cspA and tac promoter systems. Protein Expr. Purif. 9, 211–218 (1997).
(
10.1006/prep.1996.0678
) / Protein Expr. Purif. by JA Vasina (1997) -
Mujacic, M., Cooper, K.W. & Baneyx, F. Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238, 325–332 (1999).
(
10.1016/S0378-1119(99)00328-5
) / Gene by M Mujacic (1999) -
Vasina, J.A., Peterson, M.S. & Baneyx, F. Scale-up and optimization of the low-temperature inducible cspA promoter system. Biotechnol. Prog. 14, 714–721 (1998).
(
10.1021/bp980061p
) / Biotechnol. Prog. by JA Vasina (1998) -
Qing, G. et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877–882 (2004).
(
10.1038/nbt984
) / Nat. Biotechnol. by G Qing (2004) - Baneyx, F. & Palumbo, J.L. Improving heterologous protein folding via molecular chaperone and foldase co-expression. Methods Mol. Biol. 205, 171–197 (2003). / Methods Mol. Biol. by F Baneyx (2003)
-
Nishihara, K., Kanemori, M., Yanagi, H. & Yura, T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66, 884–889 (2000).
(
10.1128/AEM.66.3.884-889.2000
) / Appl. Environ. Microbiol. by K Nishihara (2000) -
Roman, L.J. et al. High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 8428–8432 (1995).
(
10.1073/pnas.92.18.8428
) / Proc. Natl. Acad. Sci. USA by LJ Roman (1995) -
Ayling, A. & Baneyx, F. Influence of the GroE molecular chaperone machine on the in vitro folding of Escherichia coli β-galactosidase. Protein Sci. 5, 478–487 (1996).
(
10.1002/pro.5560050309
) / Protein Sci. by A Ayling (1996) -
Nishihara, K., Kanemori, M., Kitagawa, M., Yanaga, H. & Yura, T. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64, 1694–1699 (1998).
(
10.1128/AEM.64.5.1694-1699.1998
) / Appl. Environ. Microbiol. by K Nishihara (1998) -
Agashe, V.R. et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004).
(
10.1016/S0092-8674(04)00299-5
) / Cell by VR Agashe (2004) -
Schneider, E.L., Thomas, J.G., Bassuk, J.A., Sage, E.H. & Baneyx, F. Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli. Nat. Biotechnol. 15, 581–585 (1997).
(
10.1038/nbt0697-581
) / Nat. Biotechnol. by EL Schneider (1997) -
Carrió, M.M. & Villaverde, A. Role of molecular chaperones in inclusion body formation. FEBS Lett. 537, 215–221 (2003).
(
10.1016/S0014-5793(03)00126-1
) / FEBS Lett. by MM Carrió (2003) -
Ritz, D. & Beckwith, J. Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol. 55, 21–48 (2001).
(
10.1146/annurev.micro.55.1.21
) / Annu. Rev. Microbiol. by D Ritz (2001) -
Derman, A.I., Prinz, W.A., Belin, D. & Beckwith, J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747 (1993).
(
10.1126/science.8259521
) / Science by AI Derman (1993) -
Stewart, E.J., Åslund, F. & Beckwith, J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J. 17, 5543–5550 (1998).
(
10.1093/emboj/17.19.5543
) / EMBO J. by EJ Stewart (1998) -
Derman, A.I. & Beckwith, J. Escherichia coli alkaline phosphatase localized to the cytoplasm acquires enzymatic activity in cells whose growth has been suspended: a caution for gene fusion studies. J. Bacteriol. 177, 3764–3770 (1995).
(
10.1128/JB.177.13.3764-3770.1995
) / J. Bacteriol. by AI Derman (1995) -
Prinz, W.A., Åslund, F., Holmgren, A. & Beckwith, J. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272, 15661–15667 (1997).
(
10.1074/jbc.272.25.15661
) / J. Biol. Chem. by WA Prinz (1997) -
Bessette, P.H., Åslund, F., Beckwith, J. & Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA 96, 13703–13708 (1999).
(
10.1073/pnas.96.24.13703
) / Proc. Natl. Acad. Sci. USA by PH Bessette (1999) -
Jurado, P., Ritz, D., Beckwith, J., de Lorenzo, V. & Fernandez, L.A. Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli. J. Mol. Biol. 320, 1–10 (2002).
(
10.1016/S0022-2836(02)00405-9
) / J. Mol. Biol. by P Jurado (2002) -
Levy, R., Weiss, R., Chen, G., Iverson, B.L. & Georgiou, G. Production of correctly folded Fab antibody fragments in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23, 338–347 (2001).
(
10.1006/prep.2001.1520
) / Protein Expr. Purif. by R Levy (2001) -
Robbens, J., Raeymaekers, A., Steidler, L., Fiers, W. & Remaut, E. Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release and purification. Protein Expr. Purif. 6, 481–486 (1995).
(
10.1006/prep.1995.1064
) / Protein Expr. Purif. by J Robbens (1995) -
Wan, E. & Baneyx, F. TolAIII co-overexpression facilitates the recovery of periplasmic recombinant proteins into the growth medium of Escherichia coli. Protein Expr. Purif. 14, 13–22 (1998).
(
10.1006/prep.1998.0941
) / Protein Expr. Purif. by E Wan (1998) -
Bergès, H., Joseph-Liauzun, E. & Fayet, O. Combined effects of the signal sequence and the major chaperone proteins on the export of human cytokines in Escherichia coli. Appl. Environ. Microbiol. 62, 55–60 (1996).
(
10.1128/AEM.62.1.55-60.1996
) / Appl. Environ. Microbiol. by H Bergès (1996) -
Nouwen, N., Kruijff, B. & Tommassen, J. prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors. Proc. Natl. Acad. Sci. USA 93, 5953–5957 (1996).
(
10.1073/pnas.93.12.5953
) / Proc. Natl. Acad. Sci. USA by N Nouwen (1996) -
van der Wolk, J.P.W. et al. PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA-SecY interaction during the initiation of translocation. EMBO J. 17, 3631–3639 (1998).
(
10.1093/emboj/17.13.3631
) / EMBO J. by JPW van der Wolk (1998) -
Bowers, C.W., Lau, F. & Silhavy, T.J. Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J. Bacteriol. 185, 5697–5705 (2003).
(
10.1128/JB.185.19.5697-5705.2003
) / J. Bacteriol. by CW Bowers (2003) -
Lee, H.C. & Bernstein, H.D. Trigger factor retards protein export in Escherichia coli. J. Biol. Chem. 277, 43527–43535 (2002).
(
10.1074/jbc.M205950200
) / J. Biol. Chem. by HC Lee (2002) -
DeLisa, M.P., Tullman, D. & Georgiou, G. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc. Natl. Acad. Sci. USA 100, 6115–6120 (2003).
(
10.1073/pnas.0937838100
) / Proc. Natl. Acad. Sci. USA by MP DeLisa (2003) -
DeLisa, M.P., Lee, P., Palmer, T. & Georgiou, G. Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J. Bacteriol. 186, 366–373 (2004).
(
10.1128/JB.186.2.366-373.2004
) / J. Bacteriol. by MP DeLisa (2004) -
Bothmann, H. & Plückthun, A. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16, 376–380 (1998).
(
10.1038/nbt0498-376
) / Nat. Biotechnol. by H Bothmann (1998) -
Bothmann, H. & Plückthun, A. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA.I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275, 17100–17105 (2000).
(
10.1074/jbc.M910233199
) / J. Biol. Chem. by H Bothmann (2000) -
Hayhurst, A. & Harris, W.J. Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr. Purif. 15, 336–343 (1999).
(
10.1006/prep.1999.1035
) / Protein Expr. Purif. by A Hayhurst (1999) -
Jeong, K.J. & Lee, S.Y. Secretory production of human leptin in Escherichia coli. Biotechnol. Bioeng. 67, 398–407 (2000).
(
10.1002/(SICI)1097-0290(20000220)67:4<398::AID-BIT3>3.0.CO;2-Y
) / Biotechnol. Bioeng. by KJ Jeong (2000) -
Kurokawa, Y., Yanagi, H. & Yura, T. Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66, 3960–3965 (2000).
(
10.1128/AEM.66.9.3960-3965.2000
) / Appl. Environ. Microbiol. by Y Kurokawa (2000) -
Kurokawa, Y., Yanagi, H. & Yura, T. Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J. Biol. Chem. 276, 14393–14399 (2001).
(
10.1074/jbc.M100132200
) / J. Biol. Chem. by Y Kurokawa (2001) -
Qiu, J., Swartz, J.R. & Georgiou, G. Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl. Environ. Microbiol. 64, 4891–4896 (1998).
(
10.1128/AEM.64.12.4891-4896.1998
) / Appl. Environ. Microbiol. by J Qiu (1998) -
Wulfing, C. & Rappuoli, R. Efficient production of heat-labile enterotoxin mutant proteins by overexpression of dsbA in a degP-deficient Escherichia coli strain. Arch. Microbiol. 167, 280–283 (1997).
(
10.1007/s002030050444
) / Arch. Microbiol. by C Wulfing (1997) -
Bowden, G.A. & Georgiou, G. The effect of sugars on β-lactamase aggregation in Escherichia coli. Biotechnol. Prog. 4, 97–101 (1988).
(
10.1002/btpr.5420040208
) / Biotechnol. Prog. by GA Bowden (1988) -
Sawyer, J.R., Schlom, J. & Kashmiri, S.V.S. The effects of induction conditions on production of a soluble anti-tumor SFv in Escherichia coli. Prot. Eng. 7, 1401–1406 (1994).
(
10.1093/protein/7.11.1401
) / Prot. Eng. by JR Sawyer (1994) -
Meerman, H.J. & Georgiou, G. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Bio/Technology 12, 1107–1110 (1994).
(
10.1038/nbt1194-1107
) / Bio/Technology by HJ Meerman (1994) -
Kern, R., Malki, A., Holmgren, A. & Richarme, G. Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem. J. 371, 965–972 (2003).
(
10.1042/bj20030093
) / Biochem. J. by R Kern (2003) -
Yasukawa, T. et al. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem. 270, 25328–25331 (1995).
(
10.1074/jbc.270.43.25328
) / J. Biol. Chem. by T Yasukawa (1995) -
Wang, J.D., Herman, C., Tipton, K.A., Gross, C.A. & Weissman, J.S. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111, 1027–1039 (2002).
(
10.1016/S0092-8674(02)01198-4
) / Cell by JD Wang (2002) -
Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002).
(
10.1126/science.298.5599.1790
) / Science by M Wacker (2002) -
Zhang, Z. et al. A new strategy for the synthesis of glycoproteins. Science 303, 371–373 (2004).
(
10.1126/science.1089509
) / Science by Z Zhang (2004)
Dates
Type | When |
---|---|
Created | 20 years, 10 months ago (Nov. 4, 2004, 5:01 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 14, 2024, 7:18 p.m.) |
Indexed | 2 days, 10 hours ago (Sept. 3, 2025, 6:32 a.m.) |
Issued | 20 years, 10 months ago (Nov. 1, 2004) |
Published | 20 years, 10 months ago (Nov. 1, 2004) |
Published Online | 20 years, 10 months ago (Nov. 4, 2004) |
Published Print | 20 years, 10 months ago (Nov. 1, 2004) |
@article{Baneyx_2004, title={Recombinant protein folding and misfolding in Escherichia coli}, volume={22}, ISSN={1546-1696}, url={http://dx.doi.org/10.1038/nbt1029}, DOI={10.1038/nbt1029}, number={11}, journal={Nature Biotechnology}, publisher={Springer Science and Business Media LLC}, author={Baneyx, François and Mujacic, Mirna}, year={2004}, month=nov, pages={1399–1408} }