Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
76
Referenced
212
-
Will, C. L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011)
(
10.1101/cshperspect.a003707
) / Cold Spring Harb. Perspect. Biol. by CL Will (2011) -
Boesler, C. et al. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity. Nat. Commun. 7, 11997 (2016)
(
10.1038/ncomms11997
) / Nat. Commun. by C Boesler (2016) -
Staley, J. P. & Guthrie, C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3, 55–64 (1999)
(
10.1016/S1097-2765(00)80174-4
) / Mol. Cell by JP Staley (1999) -
Lesser, C. F. & Guthrie, C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262, 1982–1988 (1993)
(
10.1126/science.8266093
) / Science by CF Lesser (1993) -
Lybarger, S. et al. Elevated levels of a U4/U6.U5 snRNP-associated protein, Spp381p, rescue a mutant defective in spliceosome maturation. Mol. Cell. Biol. 19, 577–584 (1999)
(
10.1128/MCB.19.1.577
) / Mol. Cell. Biol. by S Lybarger (1999) -
Stevens, S. W. & Abelson, J. Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc. Natl Acad. Sci. USA 96, 7226–7231 (1999)
(
10.1073/pnas.96.13.7226
) / Proc. Natl Acad. Sci. USA by SW Stevens (1999) -
Laggerbauer, B., Achsel, T. & Lührmann, R. The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc. Natl Acad. Sci. USA 95, 4188–4192 (1998)
(
10.1073/pnas.95.8.4188
) / Proc. Natl Acad. Sci. USA by B Laggerbauer (1998) -
Raghunathan, P. L. & Guthrie, C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr. Biol. 8, 847–855 (1998)
(
10.1016/S0960-9822(07)00345-4
) / Curr. Biol. by PL Raghunathan (1998) -
Fabrizio, P. et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol. Cell 36, 593–608 (2009)
(
10.1016/j.molcel.2009.09.040
) / Mol. Cell by P Fabrizio (2009) -
Bessonov, S. et al. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA 16, 2384–2403 (2010)
(
10.1261/rna.2456210
) / RNA by S Bessonov (2010) -
Tarn, W. Y. et al. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 13, 2421–2431 (1994)
(
10.1002/j.1460-2075.1994.tb06527.x
) / EMBO J. by WY Tarn (1994) -
Hoskins, A. A., Rodgers, M. L., Friedman, L. J., Gelles, J. & Moore, M. J. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation. eLife 5, e14166 (2016)
(
10.7554/eLife.14166
) / eLife by AA Hoskins (2016) -
Madhani, H. D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992)
(
10.1016/0092-8674(92)90556-R
) / Cell by HD Madhani (1992) -
Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993)
(
10.1073/pnas.90.14.6498
) / Proc. Natl Acad. Sci. USA by TA Steitz (1993) -
Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013)
(
10.1038/nature12734
) / Nature by SM Fica (2013) -
Newman, A. J. & Norman, C. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell 68, 743–754 (1992)
(
10.1016/0092-8674(92)90149-7
) / Cell by AJ Newman (1992) -
Sontheimer, E. J. & Steitz, J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262, 1989–1996 (1993)
(
10.1126/science.8266094
) / Science by EJ Sontheimer (1993) -
Galej, W. P. et al. Cryo-EM structure of the spliceosome immediately after branching. Nature 537, 197–201 (2016)
(
10.1038/nature19316
) / Nature by WP Galej (2016) -
Wan, R., Yan, C., Bai, R., Huang, G. & Shi, Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 353, 895–904 (2016)
(
10.1126/science.aag2235
) / Science by R Wan (2016) -
Rauhut, R. et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353, 1399–1405 (2016)
(
10.1126/science.aag1906
) / Science by R Rauhut (2016) -
Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast activated spliceosome at 3.5 Å resolution. Science 353, 904–911 (2016)
(
10.1126/science.aag0291
) / Science by C Yan (2016) -
Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast step II catalytically activated spliceosome. Science 355, 149–155 (2017)
(
10.1126/science.aak9979
) / Science by C Yan (2017) -
Fica, S. M. et al. Structure of a spliceosome remodelled for exon ligation. Nature 542, 377–380 (2017)
(
10.1038/nature21078
) / Nature by SM Fica (2017) -
Bertram, K. et al. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542, 318–323 (2017)
(
10.1038/nature21079
) / Nature by K Bertram (2017) -
Agafonov, D. E. et al. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science 351, 1416–1420 (2016)
(
10.1126/science.aad2085
) / Science by DE Agafonov (2016) -
Wan, R. et al. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: insights into spliceosome assembly and catalysis. Science 351, 466–475 (2016)
(
10.1126/science.aad6466
) / Science by R Wan (2016) -
Nguyen, T. H. D. et al. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. Nature 530, 298–302 (2016)
(
10.1038/nature16940
) / Nature by THD Nguyen (2016) -
van Roon, A.-M. M. et al. Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-binding domain. RNA 23, 968–981 (2017)
(
10.1261/rna.059378.116
) / RNA by A-MM van Roon (2017) -
Lin, P.-C. & Xu, R.-M. Structure and assembly of the SF3a splicing factor complex of U2 snRNP. EMBO J. 31, 1579–1590 (2012)
(
10.1038/emboj.2012.7
) / EMBO J. by P-C Lin (2012) -
Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016)
(
10.1016/j.molcel.2016.08.036
) / Mol. Cell by C Cretu (2016) -
Rigo, N., Sun, C., Fabrizio, P., Kastner, B. & Lührmann, R. Protein localisation by electron microscopy reveals the architecture of the yeast spliceosomal B complex. EMBO J. 34, 3059–3073 (2015)
(
10.15252/embj.201592022
) / EMBO J. by N Rigo (2015) -
Boehringer, D. et al. Three-dimensional structure of a pre-catalytic human spliceosomal complex B. Nat. Struct. Mol. Biol. 11, 463–468 (2004)
(
10.1038/nsmb761
) / Nat. Struct. Mol. Biol. by D Boehringer (2004) -
Deckert, J. et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol. Cell. Biol. 26, 5528–5543 (2006)
(
10.1128/MCB.00582-06
) / Mol. Cell. Biol. by J Deckert (2006) -
Tarn, W.-Y., Lee, K.-R. & Cheng, S. C. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA. Proc. Natl Acad. Sci. USA 90, 10821–10825 (1993)
(
10.1073/pnas.90.22.10821
) / Proc. Natl Acad. Sci. USA by W-Y Tarn (1993) -
Wolf, E. et al. Exon, intron and splice site locations in the spliceosomal B complex. EMBO J. 28, 2283–2292 (2009)
(
10.1038/emboj.2009.171
) / EMBO J. by E Wolf (2009) -
Krämer, A., Grüter, P., Gröning, K. & Kastner, B. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J. Cell Biol. 145, 1355–1368 (1999)
(
10.1083/jcb.145.7.1355
) / J. Cell Biol. by A Krämer (1999) -
Nesic, D. & Krämer, A. Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation. Mol. Cell. Biol. 21, 6406–6417 (2001)
(
10.1128/MCB.21.19.6406-6417.2001
) / Mol. Cell. Biol. by D Nesic (2001) - Igel, H., Wells, S., Perriman, R. & Ares, M. Jr. Conservation of structure and subunit interactions in yeast homologues of splicing factor 3b (SF3b) subunits. RNA 4, 1–10 (1998) / RNA by H Igel (1998)
-
Pauling, M. H., McPheeters, D. S. & Ares, M. Jr. Functional Cus1p is found with Hsh155p in a multiprotein splicing factor associated with U2 snRNA. Mol. Cell. Biol. 20, 2176–2185 (2000)
(
10.1128/MCB.20.6.2176-2185.2000
) / Mol. Cell. Biol. by MH Pauling (2000) -
Dybkov, O. et al. U2 snRNA-protein contacts in purified human 17S U2 snRNPs and in spliceosomal A and B complexes. Mol. Cell. Biol. 26, 2803–2816 (2006)
(
10.1128/MCB.26.7.2803-2816.2006
) / Mol. Cell. Biol. by O Dybkov (2006) -
Schneider, C. et al. Dynamic contacts of U2, RES, Cwc25, Prp8 and Prp45 proteins with the pre-mRNA branch-site and 3′ splice site during catalytic activation and step 1 catalysis in yeast spliceosomes. PLoS Genet. 11, e1005539 (2015)
(
10.1371/journal.pgen.1005539
) / PLoS Genet. by C Schneider (2015) -
Xie, J., Beickman, K., Otte, E. & Rymond, B. C. Progression through the spliceosome cycle requires Prp38p function for U4/U6 snRNA dissociation. EMBO J. 17, 2938–2946 (1998)
(
10.1093/emboj/17.10.2938
) / EMBO J. by J Xie (1998) - Stevens, S. W. et al. Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. RNA 7, 1543–1553 (2001) / RNA by SW Stevens (2001)
-
Agafonov, D. E. et al. Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol. Cell. Biol. 31, 2667–2682 (2011)
(
10.1128/MCB.05266-11
) / Mol. Cell. Biol. by DE Agafonov (2011) -
Gottschalk, A. et al. Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6·U5] tri-snRNP. EMBO J. 18, 4535–4548 (1999)
(
10.1093/emboj/18.16.4535
) / EMBO J. by A Gottschalk (1999) -
Ulrich, A. K. C., Seeger, M., Schütze, T., Bartlick, N. & Wahl, M. C. Scaffolding in the spliceosome via single α helices. Structure 24, 1972–1983 (2016)
(
10.1016/j.str.2016.09.007
) / Structure by AKC Ulrich (2016) -
Kuhn, A. N., Li, Z. & Brow, D. A. Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome. Mol. Cell 3, 65–75 (1999)
(
10.1016/S1097-2765(00)80175-6
) / Mol. Cell by AN Kuhn (1999) -
Chan, S.-P. & Cheng, S.-C. The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation. J. Biol. Chem. 280, 31190–31199 (2005)
(
10.1074/jbc.M505060200
) / J. Biol. Chem. by S-P Chan (2005) -
Fica, S. M., Mefford, M. A., Piccirilli, J. A. & Staley, J. P. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 21, 464–471 (2014)
(
10.1038/nsmb.2815
) / Nat. Struct. Mol. Biol. by SM Fica (2014) -
Shuster, E. O. & Guthrie, C. Two conserved domains of yeast U2 snRNA are separated by 945 nonessential nucleotides. Cell 55, 41–48 (1988)
(
10.1016/0092-8674(88)90007-4
) / Cell by EO Shuster (1988) -
Nguyen, T. H. D. et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 523, 47–52 (2015)
(
10.1038/nature14548
) / Nature by THD Nguyen (2015) -
Umen, J. G. & Guthrie, C. A novel role for a U5 snRNP protein in 3′ splice site selection. Genes Dev. 9, 855–868 (1995)
(
10.1101/gad.9.7.855
) / Genes Dev. by JG Umen (1995) -
Abelson, J., Hadjivassiliou, H. & Guthrie, C. Preparation of fluorescent pre-mRNA substrates for an smFRET study of pre-mRNA splicing in yeast. Methods Enzymol. 472, 31–40 (2010)
(
10.1016/S0076-6879(10)72017-6
) / Methods Enzymol. by J Abelson (2010) -
Wu, T. P., Ruan, K. C. & Liu, W. Y. A fluorescence-labeling method for sequencing small RNA on polyacrylamide gel. Nucleic Acids Res. 24, 3472–3473 (1996)
(
10.1093/nar/24.17.3472
) / Nucleic Acids Res. by TP Wu (1996) -
Zhou, Z. & Reed, R. Purification of functional RNA-protein complexes using MS2-MBP. Curr. Protoc. Mol. Biol. 63, 27.3.1—27.3.7 (2001)
(
10.1002/0471142727.mb2703s63
) / Curr. Protoc. Mol. Biol. by Z Zhou (2001) -
Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013)
(
10.1038/nmeth.2472
) / Nat. Methods by X Li (2013) -
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015)
(
10.1016/j.jsb.2015.08.008
) / J. Struct. Biol. by A Rohou (2015) -
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012)
(
10.1016/j.jsb.2012.09.006
) / J. Struct. Biol. by SH Scheres (2012) -
Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012)
(
10.1038/nmeth.2115
) / Nat. Methods by SHW Scheres (2012) -
Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007)
(
10.1016/j.jsb.2006.05.009
) / J. Struct. Biol. by G Tang (2007) -
Scheres, S. H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015)
(
10.1016/j.jsb.2014.11.010
) / J. Struct. Biol. by SH Scheres (2015) -
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)
(
10.1002/jcc.20084
) / J. Comput. Chem. by EF Pettersen (2004) -
Bai, X.-C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. W. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015)
(
10.7554/eLife.11182
) / eLife by X-C Bai (2015) -
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014)
(
10.1038/nmeth.2727
) / Nat. Methods by A Kucukelbir (2014) -
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)
(
10.1107/S0907444904019158
) / Acta Crystallogr. D by P Emsley (2004) -
Adams, P. D . et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)
(
10.1107/S0907444909052925
) / Acta Crystallogr. D by PD Adams (2010) -
Zhou, L. et al. Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA. Nature 506, 116–120 (2014)
(
10.1038/nature12803
) / Nature by L Zhou (2014) -
Leung, A. K. W., Nagai, K. & Li, J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473, 536–539 (2011)
(
10.1038/nature09956
) / Nature by AKW Leung (2011) - Eswar, N . et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics Chapter 5, 5.6.1–5.6.3 (2014) / Curr. Protoc. Bioinformatics by N Eswar (2014)
-
Wriggers, W. Conventions and workflows for using Situs. Acta Crystallogr. D 68, 344–351 (2012)
(
10.1107/S0907444911049791
) / Acta Crystallogr. D by W Wriggers (2012) -
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011)
(
10.1186/1748-7188-6-26
) / Algorithms Mol. Biol. by R Lorenz (2011) -
Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40, e112 (2012)
(
10.1093/nar/gks339
) / Nucleic Acids Res. by M Popenda (2012) -
Mozaffari-Jovin, S. et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341, 80–84 (2013)
(
10.1126/science.1237515
) / Science by S Mozaffari-Jovin (2013) -
McGrail, J. C. & O’Keefe, R. T. The U1, U2 and U5 snRNAs crosslink to the 5′ exon during yeast pre-mRNA splicing. Nucleic Acids Res. 36, 814–825 (2008)
(
10.1093/nar/gkm1098
) / Nucleic Acids Res. by JC McGrail (2008) -
Sharma, S., Wongpalee, S. P., Vashisht, A., Wohlschlegel, J. A. & Black, D. L. Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes Dev. 28, 2518–2531 (2014)
(
10.1101/gad.248625.114
) / Genes Dev. by S Sharma (2014) -
van Nues, R. W. & Beggs, J. D. Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae. Genetics 157, 1451–1467 (2001)
(
10.1093/genetics/157.4.1451
) / Genetics by RW van Nues (2001)
Dates
Type | When |
---|---|
Created | 8 years, 3 months ago (May 18, 2017, 10:55 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 2:02 p.m.) |
Indexed | 1 week, 6 days ago (Aug. 12, 2025, 6:01 p.m.) |
Issued | 8 years, 3 months ago (May 22, 2017) |
Published | 8 years, 3 months ago (May 22, 2017) |
Published Online | 8 years, 3 months ago (May 22, 2017) |
Published Print | 8 years, 2 months ago (June 1, 2017) |
@article{Plaschka_2017, title={Structure of a pre-catalytic spliceosome}, volume={546}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature22799}, DOI={10.1038/nature22799}, number={7660}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Plaschka, Clemens and Lin, Pei-Chun and Nagai, Kiyoshi}, year={2017}, month=may, pages={617–621} }