Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Plaschka, C., Lin, P.-C., & Nagai, K. (2017). Structure of a pre-catalytic spliceosome. Nature, 546(7660), 617–621.

Authors 3
  1. Clemens Plaschka (first)
  2. Pei-Chun Lin (additional)
  3. Kiyoshi Nagai (additional)
References 76 Referenced 212
  1. Will, C. L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011) (10.1101/cshperspect.a003707) / Cold Spring Harb. Perspect. Biol. by CL Will (2011)
  2. Boesler, C. et al. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity. Nat. Commun. 7, 11997 (2016) (10.1038/ncomms11997) / Nat. Commun. by C Boesler (2016)
  3. Staley, J. P. & Guthrie, C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3, 55–64 (1999) (10.1016/S1097-2765(00)80174-4) / Mol. Cell by JP Staley (1999)
  4. Lesser, C. F. & Guthrie, C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262, 1982–1988 (1993) (10.1126/science.8266093) / Science by CF Lesser (1993)
  5. Lybarger, S. et al. Elevated levels of a U4/U6.U5 snRNP-associated protein, Spp381p, rescue a mutant defective in spliceosome maturation. Mol. Cell. Biol. 19, 577–584 (1999) (10.1128/MCB.19.1.577) / Mol. Cell. Biol. by S Lybarger (1999)
  6. Stevens, S. W. & Abelson, J. Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc. Natl Acad. Sci. USA 96, 7226–7231 (1999) (10.1073/pnas.96.13.7226) / Proc. Natl Acad. Sci. USA by SW Stevens (1999)
  7. Laggerbauer, B., Achsel, T. & Lührmann, R. The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc. Natl Acad. Sci. USA 95, 4188–4192 (1998) (10.1073/pnas.95.8.4188) / Proc. Natl Acad. Sci. USA by B Laggerbauer (1998)
  8. Raghunathan, P. L. & Guthrie, C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr. Biol. 8, 847–855 (1998) (10.1016/S0960-9822(07)00345-4) / Curr. Biol. by PL Raghunathan (1998)
  9. Fabrizio, P. et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol. Cell 36, 593–608 (2009) (10.1016/j.molcel.2009.09.040) / Mol. Cell by P Fabrizio (2009)
  10. Bessonov, S. et al. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA 16, 2384–2403 (2010) (10.1261/rna.2456210) / RNA by S Bessonov (2010)
  11. Tarn, W. Y. et al. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 13, 2421–2431 (1994) (10.1002/j.1460-2075.1994.tb06527.x) / EMBO J. by WY Tarn (1994)
  12. Hoskins, A. A., Rodgers, M. L., Friedman, L. J., Gelles, J. & Moore, M. J. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation. eLife 5, e14166 (2016) (10.7554/eLife.14166) / eLife by AA Hoskins (2016)
  13. Madhani, H. D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992) (10.1016/0092-8674(92)90556-R) / Cell by HD Madhani (1992)
  14. Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993) (10.1073/pnas.90.14.6498) / Proc. Natl Acad. Sci. USA by TA Steitz (1993)
  15. Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013) (10.1038/nature12734) / Nature by SM Fica (2013)
  16. Newman, A. J. & Norman, C. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell 68, 743–754 (1992) (10.1016/0092-8674(92)90149-7) / Cell by AJ Newman (1992)
  17. Sontheimer, E. J. & Steitz, J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262, 1989–1996 (1993) (10.1126/science.8266094) / Science by EJ Sontheimer (1993)
  18. Galej, W. P. et al. Cryo-EM structure of the spliceosome immediately after branching. Nature 537, 197–201 (2016) (10.1038/nature19316) / Nature by WP Galej (2016)
  19. Wan, R., Yan, C., Bai, R., Huang, G. & Shi, Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 353, 895–904 (2016) (10.1126/science.aag2235) / Science by R Wan (2016)
  20. Rauhut, R. et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353, 1399–1405 (2016) (10.1126/science.aag1906) / Science by R Rauhut (2016)
  21. Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast activated spliceosome at 3.5 Å resolution. Science 353, 904–911 (2016) (10.1126/science.aag0291) / Science by C Yan (2016)
  22. Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast step II catalytically activated spliceosome. Science 355, 149–155 (2017) (10.1126/science.aak9979) / Science by C Yan (2017)
  23. Fica, S. M. et al. Structure of a spliceosome remodelled for exon ligation. Nature 542, 377–380 (2017) (10.1038/nature21078) / Nature by SM Fica (2017)
  24. Bertram, K. et al. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542, 318–323 (2017) (10.1038/nature21079) / Nature by K Bertram (2017)
  25. Agafonov, D. E. et al. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science 351, 1416–1420 (2016) (10.1126/science.aad2085) / Science by DE Agafonov (2016)
  26. Wan, R. et al. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: insights into spliceosome assembly and catalysis. Science 351, 466–475 (2016) (10.1126/science.aad6466) / Science by R Wan (2016)
  27. Nguyen, T. H. D. et al. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. Nature 530, 298–302 (2016) (10.1038/nature16940) / Nature by THD Nguyen (2016)
  28. van Roon, A.-M. M. et al. Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-binding domain. RNA 23, 968–981 (2017) (10.1261/rna.059378.116) / RNA by A-MM van Roon (2017)
  29. Lin, P.-C. & Xu, R.-M. Structure and assembly of the SF3a splicing factor complex of U2 snRNP. EMBO J. 31, 1579–1590 (2012) (10.1038/emboj.2012.7) / EMBO J. by P-C Lin (2012)
  30. Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016) (10.1016/j.molcel.2016.08.036) / Mol. Cell by C Cretu (2016)
  31. Rigo, N., Sun, C., Fabrizio, P., Kastner, B. & Lührmann, R. Protein localisation by electron microscopy reveals the architecture of the yeast spliceosomal B complex. EMBO J. 34, 3059–3073 (2015) (10.15252/embj.201592022) / EMBO J. by N Rigo (2015)
  32. Boehringer, D. et al. Three-dimensional structure of a pre-catalytic human spliceosomal complex B. Nat. Struct. Mol. Biol. 11, 463–468 (2004) (10.1038/nsmb761) / Nat. Struct. Mol. Biol. by D Boehringer (2004)
  33. Deckert, J. et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol. Cell. Biol. 26, 5528–5543 (2006) (10.1128/MCB.00582-06) / Mol. Cell. Biol. by J Deckert (2006)
  34. Tarn, W.-Y., Lee, K.-R. & Cheng, S. C. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA. Proc. Natl Acad. Sci. USA 90, 10821–10825 (1993) (10.1073/pnas.90.22.10821) / Proc. Natl Acad. Sci. USA by W-Y Tarn (1993)
  35. Wolf, E. et al. Exon, intron and splice site locations in the spliceosomal B complex. EMBO J. 28, 2283–2292 (2009) (10.1038/emboj.2009.171) / EMBO J. by E Wolf (2009)
  36. Krämer, A., Grüter, P., Gröning, K. & Kastner, B. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J. Cell Biol. 145, 1355–1368 (1999) (10.1083/jcb.145.7.1355) / J. Cell Biol. by A Krämer (1999)
  37. Nesic, D. & Krämer, A. Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation. Mol. Cell. Biol. 21, 6406–6417 (2001) (10.1128/MCB.21.19.6406-6417.2001) / Mol. Cell. Biol. by D Nesic (2001)
  38. Igel, H., Wells, S., Perriman, R. & Ares, M. Jr. Conservation of structure and subunit interactions in yeast homologues of splicing factor 3b (SF3b) subunits. RNA 4, 1–10 (1998) / RNA by H Igel (1998)
  39. Pauling, M. H., McPheeters, D. S. & Ares, M. Jr. Functional Cus1p is found with Hsh155p in a multiprotein splicing factor associated with U2 snRNA. Mol. Cell. Biol. 20, 2176–2185 (2000) (10.1128/MCB.20.6.2176-2185.2000) / Mol. Cell. Biol. by MH Pauling (2000)
  40. Dybkov, O. et al. U2 snRNA-protein contacts in purified human 17S U2 snRNPs and in spliceosomal A and B complexes. Mol. Cell. Biol. 26, 2803–2816 (2006) (10.1128/MCB.26.7.2803-2816.2006) / Mol. Cell. Biol. by O Dybkov (2006)
  41. Schneider, C. et al. Dynamic contacts of U2, RES, Cwc25, Prp8 and Prp45 proteins with the pre-mRNA branch-site and 3′ splice site during catalytic activation and step 1 catalysis in yeast spliceosomes. PLoS Genet. 11, e1005539 (2015) (10.1371/journal.pgen.1005539) / PLoS Genet. by C Schneider (2015)
  42. Xie, J., Beickman, K., Otte, E. & Rymond, B. C. Progression through the spliceosome cycle requires Prp38p function for U4/U6 snRNA dissociation. EMBO J. 17, 2938–2946 (1998) (10.1093/emboj/17.10.2938) / EMBO J. by J Xie (1998)
  43. Stevens, S. W. et al. Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. RNA 7, 1543–1553 (2001) / RNA by SW Stevens (2001)
  44. Agafonov, D. E. et al. Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol. Cell. Biol. 31, 2667–2682 (2011) (10.1128/MCB.05266-11) / Mol. Cell. Biol. by DE Agafonov (2011)
  45. Gottschalk, A. et al. Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6·U5] tri-snRNP. EMBO J. 18, 4535–4548 (1999) (10.1093/emboj/18.16.4535) / EMBO J. by A Gottschalk (1999)
  46. Ulrich, A. K. C., Seeger, M., Schütze, T., Bartlick, N. & Wahl, M. C. Scaffolding in the spliceosome via single α helices. Structure 24, 1972–1983 (2016) (10.1016/j.str.2016.09.007) / Structure by AKC Ulrich (2016)
  47. Kuhn, A. N., Li, Z. & Brow, D. A. Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome. Mol. Cell 3, 65–75 (1999) (10.1016/S1097-2765(00)80175-6) / Mol. Cell by AN Kuhn (1999)
  48. Chan, S.-P. & Cheng, S.-C. The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation. J. Biol. Chem. 280, 31190–31199 (2005) (10.1074/jbc.M505060200) / J. Biol. Chem. by S-P Chan (2005)
  49. Fica, S. M., Mefford, M. A., Piccirilli, J. A. & Staley, J. P. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 21, 464–471 (2014) (10.1038/nsmb.2815) / Nat. Struct. Mol. Biol. by SM Fica (2014)
  50. Shuster, E. O. & Guthrie, C. Two conserved domains of yeast U2 snRNA are separated by 945 nonessential nucleotides. Cell 55, 41–48 (1988) (10.1016/0092-8674(88)90007-4) / Cell by EO Shuster (1988)
  51. Nguyen, T. H. D. et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 523, 47–52 (2015) (10.1038/nature14548) / Nature by THD Nguyen (2015)
  52. Umen, J. G. & Guthrie, C. A novel role for a U5 snRNP protein in 3′ splice site selection. Genes Dev. 9, 855–868 (1995) (10.1101/gad.9.7.855) / Genes Dev. by JG Umen (1995)
  53. Abelson, J., Hadjivassiliou, H. & Guthrie, C. Preparation of fluorescent pre-mRNA substrates for an smFRET study of pre-mRNA splicing in yeast. Methods Enzymol. 472, 31–40 (2010) (10.1016/S0076-6879(10)72017-6) / Methods Enzymol. by J Abelson (2010)
  54. Wu, T. P., Ruan, K. C. & Liu, W. Y. A fluorescence-labeling method for sequencing small RNA on polyacrylamide gel. Nucleic Acids Res. 24, 3472–3473 (1996) (10.1093/nar/24.17.3472) / Nucleic Acids Res. by TP Wu (1996)
  55. Zhou, Z. & Reed, R. Purification of functional RNA-protein complexes using MS2-MBP. Curr. Protoc. Mol. Biol. 63, 27.3.1—27.3.7 (2001) (10.1002/0471142727.mb2703s63) / Curr. Protoc. Mol. Biol. by Z Zhou (2001)
  56. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013) (10.1038/nmeth.2472) / Nat. Methods by X Li (2013)
  57. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015) (10.1016/j.jsb.2015.08.008) / J. Struct. Biol. by A Rohou (2015)
  58. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012) (10.1016/j.jsb.2012.09.006) / J. Struct. Biol. by SH Scheres (2012)
  59. Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012) (10.1038/nmeth.2115) / Nat. Methods by SHW Scheres (2012)
  60. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007) (10.1016/j.jsb.2006.05.009) / J. Struct. Biol. by G Tang (2007)
  61. Scheres, S. H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015) (10.1016/j.jsb.2014.11.010) / J. Struct. Biol. by SH Scheres (2015)
  62. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004) (10.1002/jcc.20084) / J. Comput. Chem. by EF Pettersen (2004)
  63. Bai, X.-C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. W. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015) (10.7554/eLife.11182) / eLife by X-C Bai (2015)
  64. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014) (10.1038/nmeth.2727) / Nat. Methods by A Kucukelbir (2014)
  65. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004) (10.1107/S0907444904019158) / Acta Crystallogr. D by P Emsley (2004)
  66. Adams, P. D . et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010) (10.1107/S0907444909052925) / Acta Crystallogr. D by PD Adams (2010)
  67. Zhou, L. et al. Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA. Nature 506, 116–120 (2014) (10.1038/nature12803) / Nature by L Zhou (2014)
  68. Leung, A. K. W., Nagai, K. & Li, J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473, 536–539 (2011) (10.1038/nature09956) / Nature by AKW Leung (2011)
  69. Eswar, N . et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics Chapter 5, 5.6.1–5.6.3 (2014) / Curr. Protoc. Bioinformatics by N Eswar (2014)
  70. Wriggers, W. Conventions and workflows for using Situs. Acta Crystallogr. D 68, 344–351 (2012) (10.1107/S0907444911049791) / Acta Crystallogr. D by W Wriggers (2012)
  71. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011) (10.1186/1748-7188-6-26) / Algorithms Mol. Biol. by R Lorenz (2011)
  72. Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40, e112 (2012) (10.1093/nar/gks339) / Nucleic Acids Res. by M Popenda (2012)
  73. Mozaffari-Jovin, S. et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341, 80–84 (2013) (10.1126/science.1237515) / Science by S Mozaffari-Jovin (2013)
  74. McGrail, J. C. & O’Keefe, R. T. The U1, U2 and U5 snRNAs crosslink to the 5′ exon during yeast pre-mRNA splicing. Nucleic Acids Res. 36, 814–825 (2008) (10.1093/nar/gkm1098) / Nucleic Acids Res. by JC McGrail (2008)
  75. Sharma, S., Wongpalee, S. P., Vashisht, A., Wohlschlegel, J. A. & Black, D. L. Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes Dev. 28, 2518–2531 (2014) (10.1101/gad.248625.114) / Genes Dev. by S Sharma (2014)
  76. van Nues, R. W. & Beggs, J. D. Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae. Genetics 157, 1451–1467 (2001) (10.1093/genetics/157.4.1451) / Genetics by RW van Nues (2001)
Dates
Type When
Created 8 years, 3 months ago (May 18, 2017, 10:55 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:02 p.m.)
Indexed 1 week, 6 days ago (Aug. 12, 2025, 6:01 p.m.)
Issued 8 years, 3 months ago (May 22, 2017)
Published 8 years, 3 months ago (May 22, 2017)
Published Online 8 years, 3 months ago (May 22, 2017)
Published Print 8 years, 2 months ago (June 1, 2017)
Funders 0

None

@article{Plaschka_2017, title={Structure of a pre-catalytic spliceosome}, volume={546}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature22799}, DOI={10.1038/nature22799}, number={7660}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Plaschka, Clemens and Lin, Pei-Chun and Nagai, Kiyoshi}, year={2017}, month=may, pages={617–621} }