Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
39
Referenced
202
-
Xu, R., Karthik, J., Damodaran, A. R. & Martin, L. W. Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nat. Commun. 5, 3120 (2014)
(
10.1038/ncomms4120
) / Nat. Commun. by R Xu (2014) -
Chaplya, P. M. & Carman, G. P. Dielectric and piezoelectric response of lead zirconate–lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion. J. Appl. Phys. 90, 5278–5286 (2001)
(
10.1063/1.1410330
) / J. Appl. Phys. by PM Chaplya (2001) -
Karthik, J. & Martin, L. Pyroelectric properties of polydomain epitaxial Pb(Zr1–x,Tix)O3 thin films. Phys. Rev. B 84, 024102 (2011)
(
10.1103/PhysRevB.84.024102
) / Phys. Rev. B by J Karthik (2011) -
Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009)
(
10.1038/nmat2373
) / Nat. Mater. by J Seidel (2009) -
Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015)
(
10.1021/jz502666j
) / J. Phys. Chem. Lett. by S Liu (2015) -
Jin, L., Li, F. & Zhang, S. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)
(
10.1111/jace.12773
) / J. Am. Ceram. Soc. by L Jin (2014) -
Ioffe, L. B. & Vinokur, V. M. Dynamics of interfaces and dislocations in disordered media. J. Phys. C 20, 6149–6158 (1987)
(
10.1088/0022-3719/20/36/016
) / J. Phys. C by LB Ioffe (1987) -
Chauve, P., Giamarchi, T. & Le Doussal, P. Creep and depinning in disordered media. Phys. Rev. B 62, 6241–6267 (2000)
(
10.1103/PhysRevB.62.6241
) / Phys. Rev. B by P Chauve (2000) -
Tybell, T., Paruch, P., Giamarchi, T. & Triscone, J.-M. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002)
(
10.1103/PhysRevLett.89.097601
) / Phys. Rev. Lett. by T Tybell (2002) -
Jo, J. et al. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin film. Phys. Rev. Lett. 102, 045701 (2009)
(
10.1103/PhysRevLett.102.045701
) / Phys. Rev. Lett. by J Jo (2009) -
Paruch, P., Giamarchi, T., Tybell, T. & Triscone, J.-M. Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films. J. Appl. Phys. 100, 051608 (2006)
(
10.1063/1.2337356
) / J. Appl. Phys. by P Paruch (2006) -
Pertsev, N. A. et al. Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy. Nanotechnology 19, 375703 (2008)
(
10.1088/0957-4484/19/37/375703
) / Nanotechnology by NA Pertsev (2008) -
Liu, S., Grinberg, I., Takenaka, H. & Rappe, A. M. Reinterpretation of the bond-valence model with bond-order formalism: an improved bond-valence-based interatomic potential for PbTiO3 . Phys. Rev. B 88, 104102 (2013)
(
10.1103/PhysRevB.88.104102
) / Phys. Rev. B by S Liu (2013) -
Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954)
(
10.1103/PhysRev.95.690
) / Phys. Rev. by WJ Merz (1954) -
Miller, R. C. & Weinreich, G. Mechanism for the sidewise motion of 180° domain walls in barium titanate. Phys. Rev. 117, 1460–1466 (1960)
(
10.1103/PhysRev.117.1460
) / Phys. Rev. by RC Miller (1960) -
Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002)
(
10.1103/PhysRevB.65.104111
) / Phys. Rev. B by B Meyer (2002) -
Shin, Y.-H., Grinberg, I., Chen, I.-W. & Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007)
(
10.1038/nature06165
) / Nature by Y-H Shin (2007) -
Liu, S., Grinberg, I. & Rappe, A. M. Exploration of the intrinsic inertial response of ferroelectric domain walls via molecular dynamics simulations. Appl. Phys. Lett. 103, 232907 (2013)
(
10.1063/1.4832421
) / Appl. Phys. Lett. by S Liu (2013) -
Pramanick, A., Prewitt, A. D., Forrester, J. S. & Jones, J. L. Domains, domain walls and defects in perovskite ferroelectric oxides: a review of present understanding and recent contributions. Crit. Rev. Solid State Mater. Sci. 37, 243–275 (2012)
(
10.1080/10408436.2012.686891
) / Crit. Rev. Solid State Mater. Sci. by A Pramanick (2012) -
Gao, P. et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nat. Commun. 4, 2791 (2013)
(
10.1038/ncomms3791
) / Nat. Commun. by P Gao (2013) - Hooker, M. W. Properties of PZT-based Piezoelectric Ceramics Between −150 and 250°C. Report No. NASA/CR-1998-208708, http://ntrs.nasa.gov/search.jsp?R=19980236888 (NASA, 1998)
-
Lente, M. & Eiras, J. 90° domain reorientation and domain wall rearrangement in lead zirconate titanate ceramics characterized by transient current and hysteresis loop measurements. J. Appl. Phys. 89, 5093–5099 (2001)
(
10.1063/1.1333742
) / J. Appl. Phys. by M Lente (2001) -
Lente, M., Picinin, A., Rino, J. & Eiras, J. 90° domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process. J. Appl. Phys. 95, 2646–2653 (2004)
(
10.1063/1.1645980
) / J. Appl. Phys. by M Lente (2004) -
Kong, L. & Ma, J. PZT ceramics formed directly from oxides via reactive sintering. Mater. Lett. 51, 95–100 (2001)
(
10.1016/S0167-577X(01)00272-5
) / Mater. Lett. by L Kong (2001) -
Yang, S. M. et al. ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops. Phys. Rev. B 82, 174125 (2010)
(
10.1103/PhysRevB.82.174125
) / Phys. Rev. B by SM Yang (2010) -
Wu, K. & Schulze, W. A. Effect of the ac field level on the aging of the dielectric response in polycrystalline BaTiO3 . J. Am. Ceram. Soc. 75, 3385–3389 (1992)
(
10.1111/j.1151-2916.1992.tb04438.x
) / J. Am. Ceram. Soc. by K Wu (1992) -
Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)
(
10.1126/science.1080615
) / Science by J Wang (2003) -
Shelke, V. et al. Reduced coercive field in BiFeO3 thin films through domain engineering. Adv. Mater. 23, 669–672 (2011)
(
10.1002/adma.201000807
) / Adv. Mater. by V Shelke (2011) -
Guo, E.-J., Dörr, K. & Herklotz, A. Strain controlled ferroelectric switching time of BiFeO3 capacitors. Appl. Phys. Lett. 101, 242908 (2012)
(
10.1063/1.4772006
) / Appl. Phys. Lett. by E-J Guo (2012) - Suchomel, M. R. Greater Functionality of Bismuth and Lead Based Perovskites. PhD thesis, Univ. Pennsylvania, http://repository.upenn.edu/dissertations/AAI3179819 (2005)
-
Shin, Y.-H., Cooper, V. R., Grinberg, I. & Rappe, A. M. Development of a bond-valence molecular-dynamics model for complex oxides. Phys. Rev. B 71, 054104 (2005)
(
10.1103/PhysRevB.71.054104
) / Phys. Rev. B by Y-H Shin (2005) -
Jablonski, M. L. et al. Asymmetric response of ferroelastic domain-wall motion under applied bias. ACS Appl. Mater. Interfaces 8, 2935–2941 (2016)
(
10.1021/acsami.5b08312
) / ACS Appl. Mater. Interfaces by ML Jablonski (2016) -
Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first principles. Phys. Rev. Lett. 112, 247603 (2014)
(
10.1103/PhysRevLett.112.247603
) / Phys. Rev. Lett. by JC Wojdeł (2014) -
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)
(
10.1103/PhysRevLett.100.136406
) / Phys. Rev. Lett. by JP Perdew (2008) -
Rossetti, G. A. Jr, Cline, J. P. & Navrotsky, A. Phase transition energetics and thermodynamic properties of ferroelectric PbTiO3 . J. Mater. Res. 13, 3197–3206 (1998)
(
10.1557/JMR.1998.0434
) / J. Mater. Res. by GA Rossetti Jr (1998) -
Diéguez, O., Aguado-Puente, P., Junquera, J. & Íñiguez, J. Domain walls in a perovskite oxide with two primary structural order parameters: first-principles study of BiFeO3 . Phys. Rev. B 87, 024102 (2013)
(
10.1103/PhysRevB.87.024102
) / Phys. Rev. B by O Diéguez (2013) -
Ren, W. et al. Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains. Phys. Rev. Lett. 110, 187601 (2013)
(
10.1103/PhysRevLett.110.187601
) / Phys. Rev. Lett. by W Ren (2013) -
Wang, Y. et al. BiFeO3 domain wall energies and structures: a combined experimental and density functional theory + U study. Phys. Rev. Lett. 110, 267601 (2013)
(
10.1103/PhysRevLett.110.267601
) / Phys. Rev. Lett. by Y Wang (2013) -
Zhao, Y. & Truhlar, D. G. Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound. J. Chem. Phys. 128, 184109 (2008)
(
10.1063/1.2912068
) / J. Chem. Phys. by Y Zhao (2008)
Dates
Type | When |
---|---|
Created | 9 years, 2 months ago (June 14, 2016, 12:25 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 1:52 p.m.) |
Indexed | 18 hours, 19 minutes ago (Aug. 21, 2025, 1:17 p.m.) |
Issued | 9 years, 2 months ago (June 1, 2016) |
Published | 9 years, 2 months ago (June 1, 2016) |
Published Online | 9 years, 2 months ago (June 15, 2016) |
Published Print | 9 years, 2 months ago (June 1, 2016) |
@article{Liu_2016, title={Intrinsic ferroelectric switching from first principles}, volume={534}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature18286}, DOI={10.1038/nature18286}, number={7607}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Liu, Shi and Grinberg, Ilya and Rappe, Andrew M.}, year={2016}, month=jun, pages={360–363} }