Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
30
Referenced
3,380
-
Ritchie, R. O. The conflicts between strength and toughness. Nature Mater. 10, 817–822 (2011)
(
10.1038/nmat3115
) / Nature Mater by RO Ritchie (2011) -
Wei, Y. et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature Commun. 5, 3580 (2014)
(
10.1038/ncomms4580
) / Nature Commun by Y Wei (2014) -
Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)
(
10.1002/adem.200300567
) / Adv. Eng. Mater. by JW Yeh (2004) -
Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)
(
10.1016/j.pmatsci.2013.10.001
) / Prog. Mater. Sci. by Y Zhang (2014) -
Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature Commun. 7, 10602 (2016)
(
10.1038/ncomms10602
) / Nature Commun by B Gludovatz (2016) -
Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014)
(
10.1126/science.1254581
) / Science by B Gludovatz (2014) -
Yao, M. J., Pradeep, K. G., Tasan, C. C. & Raabe, D. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5–8 (2014)
(
10.1016/j.scriptamat.2013.09.030
) / Scr. Mater. by MJ Yao (2014) -
Tasan, C. C. et al. Composition dependence of phase stability, deformation mechanisms, and mechanical properties of the CoCrFeMnNi high-entropy alloy system. JOM 66, 1993–2001 (2014)
(
10.1007/s11837-014-1133-6
) / JOM by CC Tasan (2014) -
Pradeep, K. G. et al. Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng. A 648, 183–192 (2015)
(
10.1016/j.msea.2015.09.010
) / Mater. Sci. Eng. A by KG Pradeep (2015) -
Deng, Y. et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124–133 (2015)
(
10.1016/j.actamat.2015.04.014
) / Acta Mater. by Y Deng (2015) -
Wang, Y. P., Li, B. S. & Fu, H. Z. Solid solution or intermetallics in a high-entropy alloy. Adv. Eng. Mater. 11, 641–644 (2009)
(
10.1002/adem.200900057
) / Adv. Eng. Mater. by YP Wang (2009) -
Tasan, C. C. et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu. Rev. Mater. Res. 45, 391–431 (2015)
(
10.1146/annurev-matsci-070214-021103
) / Annu. Rev. Mater. Res. by CC Tasan (2015) -
Herrera, C., Ponge, D. & Raabe, D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 59, 4653–4664 (2011)
(
10.1016/j.actamat.2011.04.011
) / Acta Mater. by C Herrera (2011) - Hadfield, R. A. Hadfield’s manganese steel. Science 12, 284–286 (1888) / Science by RA Hadfield (1888)
-
Grässel, O., Krüger, L., Frommeyer, G. & Meyer, L. W. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development–properties–application. Int. J. Plast. 16, 1391–1409 (2000)
(
10.1016/S0749-6419(00)00015-2
) / Int. J. Plast. by O Grässel (2000) -
Wu, X. et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl Acad. Sci. USA 112, 14501–14505 (2015)
(
10.1073/pnas.1517193112
) / Proc. Natl Acad. Sci. USA by X Wu (2015) -
Kim, S.-H., Kim, H. & Kim, N. J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79 (2015)
(
10.1038/nature14144
) / Nature by S-H Kim (2015) -
Pierce, D. T. et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater. 68, 238–253 (2014)
(
10.1016/j.actamat.2014.01.001
) / Acta Mater. by DT Pierce (2014) -
Mandal, S., Pradeep, K. G., Zaefferer, S. & Raabe, D. A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries’ five rotational degrees of freedom. Scr. Mater. 81, 16–19 (2014)
(
10.1016/j.scriptamat.2014.02.016
) / Scr. Mater. by S Mandal (2014) -
Dmitrieva, O. et al. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater. 59, 364–374 (2011)
(
10.1016/j.actamat.2010.09.042
) / Acta Mater. by O Dmitrieva (2011) -
Raabe, D. et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite. Acta Mater. 61, 6132–6152 (2013)
(
10.1016/j.actamat.2013.06.055
) / Acta Mater. by D Raabe (2013) -
Otto, F. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743–5755 (2013)
(
10.1016/j.actamat.2013.06.018
) / Acta Mater. by F Otto (2013) -
Hays, C., Kim, C. & Johnson, W. L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000)
(
10.1103/PhysRevLett.84.2901
) / Phys. Rev. Lett. by C Hays (2000) -
Hofmann, D. C. et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085–1089 (2008)
(
10.1038/nature06598
) / Nature by DC Hofmann (2008) -
Zaefferer, S. & Elhami, N.-N. Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 75, 20–50 (2014)
(
10.1016/j.actamat.2014.04.018
) / Acta Mater. by S Zaefferer (2014) -
Yakubtsov, I. A., Ariapour, A. & Perovic, D. D. Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Mater. 47, 1271–1279 (1999)
(
10.1016/S1359-6454(98)00419-4
) / Acta Mater. by IA Yakubtsov (1999) -
Brooks, J. W., Loretto, M. H. & Smallman, R. E. Direct observations of martensite nuclei in stainless steel. Acta Metall. 27, 1839–1847 (1979)
(
10.1016/0001-6160(79)90074-9
) / Acta Metall. by JW Brooks (1979) -
Kim, C. P., Oh, Y. S., Lee, S. & Kim, N. J. Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation. Scr. Mater. 65, 304–307 (2011)
(
10.1016/j.scriptamat.2011.04.037
) / Scr. Mater. by CP Kim (2011) -
Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009)
(
10.1126/science.1159610
) / Science by K Lu (2009) -
Wang, M. M., Tasan, C. C., Ponge, D., Dippel, A. C. & Raabe, D. Nanolaminate transformation-induced plasticity–twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater. 85, 216–228 (2015)
(
10.1016/j.actamat.2014.11.010
) / Acta Mater. by MM Wang (2015)
Dates
Type | When |
---|---|
Created | 9 years, 3 months ago (May 17, 2016, 12:42 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 1:52 p.m.) |
Indexed | 16 hours, 25 minutes ago (Aug. 22, 2025, 12:55 a.m.) |
Issued | 9 years, 3 months ago (May 18, 2016) |
Published | 9 years, 3 months ago (May 18, 2016) |
Published Online | 9 years, 3 months ago (May 18, 2016) |
Published Print | 9 years, 2 months ago (June 9, 2016) |
@article{Li_2016, title={Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off}, volume={534}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature17981}, DOI={10.1038/nature17981}, number={7606}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Li, Zhiming and Pradeep, Konda Gokuldoss and Deng, Yun and Raabe, Dierk and Tasan, Cemal Cem}, year={2016}, month=may, pages={227–230} }