Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Zubko, P., Wojdeł, J. C., Hadjimichael, M., Fernandez-Pena, S., Sené, A., Luk’yanchuk, I., Triscone, J.-M., & Íñiguez, J. (2016). Negative capacitance in multidomain ferroelectric superlattices. Nature, 534(7608), 524–528.

Authors 8
  1. Pavlo Zubko (first)
  2. Jacek C. Wojdeł (additional)
  3. Marios Hadjimichael (additional)
  4. Stéphanie Fernandez-Pena (additional)
  5. Anaïs Sené (additional)
  6. Igor Luk’yanchuk (additional)
  7. Jean-Marc Triscone (additional)
  8. Jorge Íñiguez (additional)
References 47 Referenced 347
  1. Scott, J. F. & Paz de Araujo, C. A. Ferroelectric memories. Science 246, 1400–1405 (1989) (10.1126/science.246.4936.1400) / Science by JF Scott (1989)
  2. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004) (10.1038/nature03107) / Nature by II Naumov (2004)
  3. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009) (10.1038/nature08128) / Nature by V Garcia (2009)
  4. Kim, D. J. et al. Ferroelectric tunnel memristor. Nano Lett. 12, 5697–5702 (2012) (10.1021/nl302912t) / Nano Lett. by DJ Kim (2012)
  5. Bratkovsky, A. M. & Levanyuk, A. P. Very large dielectric response of thin ferroelectric films with the dead layers. Phys. Rev. B 63, 132103 (2001) (10.1103/PhysRevB.63.132103) / Phys. Rev. B by AM Bratkovsky (2001)
  6. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008) (10.1021/nl071804g) / Nano Lett. by S Salahuddin (2008)
  7. Krowne, C. M., Kirchoefer, S. W., Chang, W., Pond, J. M. & Alldredge, L. M. B. Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices. Nano Lett. 11, 988–992 (2011) (10.1021/nl1037215) / Nano Lett. by CM Krowne (2011)
  8. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004) (10.1126/science.1098252) / Science by DD Fong (2004)
  9. Catalan, G., Jiménez, D. & Gruverman, A. Ferroelectrics: Negative capacitance detected. Nat. Mater. 14, 137–139 (2015) (10.1038/nmat4195) / Nat. Mater. by G Catalan (2015)
  10. Bratkovsky, A. M. & Levanyuk, A. P. Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films. Appl. Phys. Lett. 89, 253108 (2006) (10.1063/1.2408650) / Appl. Phys. Lett. by AM Bratkovsky (2006)
  11. Cano, A. & Jiménez, D. Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors. Appl. Phys. Lett. 97, 133509 (2010) (10.1063/1.3494533) / Appl. Phys. Lett. by A Cano (2010)
  12. Luk’yanchuk, I., Pakhomov, A., Sené, A., Sidorkin, A. & Vinokur, V. Terahertz electrodynamics of 180° domain walls in thin ferroelectric films. Preprint at http://arxiv.org/abs/1410.3124 (2014)
  13. Ponomareva, I., Bellaiche, L. & Resta, R. Dielectric anomalies in ferroelectric nanostructures. Phys. Rev. Lett. 99, 227601 (2007) (10.1103/PhysRevLett.99.227601) / Phys. Rev. Lett. by I Ponomareva (2007)
  14. Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat. Mater. 8, 392–397 (2009) (10.1038/nmat2429) / Nat. Mater. by M Stengel (2009)
  15. Mehta, R. R., Silverman, B. D. & Jacobs, J. T. Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44, 3379–3385 (1973) (10.1063/1.1662770) / J. Appl. Phys. by RR Mehta (1973)
  16. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003) (10.1038/nature01501) / Nature by J Junquera (2003)
  17. Khan, A. I. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011) (10.1063/1.3634072) / Appl. Phys. Lett. by AI Khan (2011)
  18. Appleby, D. J. R. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014) (10.1021/nl5017255) / Nano Lett. by DJR Appleby (2014)
  19. Gao, W. et al. Room-temperature negative capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano Lett. 14, 5814–5819 (2014) (10.1021/nl502691u) / Nano Lett. by W Gao (2014)
  20. Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015) (10.1038/nmat4148) / Nat. Mater. by AI Khan (2015)
  21. Luk’yanchuk, I. A., Lahoche, L. & Sené, A. Universal properties of ferroelectric domains. Phys. Rev. Lett. 102, 147601 (2009) (10.1103/PhysRevLett.102.147601) / Phys. Rev. Lett. by IA Luk’yanchuk (2009)
  22. Kopal, A., Mokrý, P., Fousek, J. & Bahník, T. Displacements of 180° domain walls in electroded ferroelectric single crystals: the effect of surface layers on restoring force. Ferroelectrics 223, 127–134 (1999) (10.1080/00150199908260562) / Ferroelectrics by A Kopal (1999)
  23. Dawber, M. et al. Tailoring the properties of artificially layered ferroelectric superlattices. Adv. Mater. 19, 4153–4159 (2007) (10.1002/adma.200700965) / Adv. Mater. by M Dawber (2007)
  24. Wojdeł, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Íñiguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013) (10.1088/0953-8984/25/30/305401) / J. Phys. Condens. Matter by JC Wojdeł (2013)
  25. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994) (10.1103/RevModPhys.66.1125) / Rev. Mod. Phys. by G Blatter (1994)
  26. De Guerville, F., Luk’yanchuk, I., Lahoche, L. & El Marssi, M. Modeling of ferroelectric domains in thin films and superlattices. Mater. Sci. Eng. B 120, 16–20 (2005) (10.1016/j.mseb.2005.02.039) / Mater. Sci. Eng. B by F De Guerville (2005)
  27. Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first principles. Phys. Rev. Lett. 112, 247603 (2014) (10.1103/PhysRevLett.112.247603) / Phys. Rev. Lett. by JC Wojdeł (2014)
  28. Lichtensteiger, C., Fernandez-Pena, S., Weymann, C., Zubko, P. & Triscone, J.-M. Tuning of the depolarization field and nanodomain structure in ferroelectric thin films. Nano Lett. 14, 4205–4211 (2014) (10.1021/nl404734z) / Nano Lett. by C Lichtensteiger (2014)
  29. Aguado-Puente, P. & Junquera, J. Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. Phys. Rev. Lett. 100, 177601 (2008) (10.1103/PhysRevLett.100.177601) / Phys. Rev. Lett. by P Aguado-Puente (2008)
  30. Warusawithana, M. P. et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009) (10.1126/science.1169678) / Science by MP Warusawithana (2009)
  31. Landau, L. & Lifshits, E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Zeitsch. Sow. 8, 153–169 (1935) / Phys. Zeitsch. Sow. by L Landau (1935)
  32. Kittel, C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946) (10.1103/PhysRev.70.965) / Phys. Rev. by C Kittel (1946)
  33. Stephanovich, V. A., Luk’yanchuk, I. A. & Karkut, M. G. Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Phys. Rev. Lett. 94, 047601 (2005) (10.1103/PhysRevLett.94.047601) / Phys. Rev. Lett. by VA Stephanovich (2005)
  34. Catalan, G., Schilling, A., Scott, J. F. & Gregg, J. M. Domains in three-dimensional ferroelectric nanostructures: theory and experiment. J. Phys. Condens. Matter 19, 132201 (2007) (10.1088/0953-8984/19/13/132201) / J. Phys. Condens. Matter by G Catalan (2007)
  35. Sené, A. Theory of Domains and Nonuniform Textures in Ferroelectrics. PhD thesis, Universite de Picardie (2010)
  36. Zubko, P. et al. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Lett. 12, 2846–2851 (2012) (10.1021/nl3003717) / Nano Lett. by P Zubko (2012)
  37. Plonka, R., Dittmann, R., Pertsev, N. A., Vasco, E. & Waser, R. Impact of the top-electrode material on the permittivity of single-crystalline Ba0.7Sr0.3TiO3 thin films. Appl. Phys. Lett. 86, 202908 (2005) (10.1063/1.1931063) / Appl. Phys. Lett. by R Plonka (2005)
  38. Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006) (10.1038/nature05148) / Nature by M Stengel (2006)
  39. Catalan, G., O’Neill, D., Bowman, R. M. & Gregg, J. M. Relaxor features in ferroelectric superlattices: a Maxwell–Wagner approach. Appl. Phys. Lett. 77, 3078–3080 (2000) (10.1063/1.1324729) / Appl. Phys. Lett. by G Catalan (2000)
  40. Ghosez, P., Cockayne, E., Waghmare, U. V. & Rabe, K. M. Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: a comparative first-principles study. Phys. Rev. B 60, 836–843 (1999) (10.1103/PhysRevB.60.836) / Phys. Rev. B by P Ghosez (1999)
  41. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008) (10.1038/nature06817) / Nature by E Bousquet (2008)
  42. Lisenkov, S. & Bellaiche, L. Phase diagrams of BaTiO3/SrTiO3 superlattices from first principles. Phys. Rev. B 76, 020102 (2007) (10.1103/PhysRevB.76.020102) / Phys. Rev. B by S Lisenkov (2007)
  43. García, A. & Vanderbilt, D. Electromechanical behavior of BaTiO3 from first principles. Appl. Phys. Lett. 72, 2981–2983 (1998) (10.1063/1.121514) / Appl. Phys. Lett. by A García (1998)
  44. Aguado-Puente, P. & Junquera, J. Structural and energetic properties of domains in PbTiO3/SrTiO3 superlattices from first principles. Phys. Rev. B 85, 184105 (2012) (10.1103/PhysRevB.85.184105) / Phys. Rev. B by P Aguado-Puente (2012)
  45. Ponomareva, I., Bellaiche, L. & Resta, R. Relation between dielectric responses and polarization fluctuations in ferroelectric nanostructures. Phys. Rev. B 76, 235403 (2007) (10.1103/PhysRevB.76.235403) / Phys. Rev. B by I Ponomareva (2007)
  46. Wojdeł, J. C. & Íñiguez, J. Testing simple predictors for the temperature of a structural phase transition. Phys. Rev. B 90, 014105 (2014) (10.1103/PhysRevB.90.014105) / Phys. Rev. B by JC Wojdeł (2014)
  47. Zubko, P. et al. Ferroelectric domains in PbTiO3/SrTiO3 superlattices. Ferroelectrics 433, 127–137 (2012) (10.1080/00150193.2012.678159) / Ferroelectrics by P Zubko (2012)
Dates
Type When
Created 9 years, 2 months ago (June 10, 2016, 1:46 p.m.)
Deposited 4 years ago (Aug. 2, 2021, 11:12 a.m.)
Indexed 6 hours, 58 minutes ago (Aug. 23, 2025, 9:17 p.m.)
Issued 9 years, 2 months ago (June 13, 2016)
Published 9 years, 2 months ago (June 13, 2016)
Published Online 9 years, 2 months ago (June 13, 2016)
Published Print 9 years, 2 months ago (June 23, 2016)
Funders 0

None

@article{Zubko_2016, title={Negative capacitance in multidomain ferroelectric superlattices}, volume={534}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature17659}, DOI={10.1038/nature17659}, number={7608}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Zubko, Pavlo and Wojdeł, Jacek C. and Hadjimichael, Marios and Fernandez-Pena, Stéphanie and Sené, Anaïs and Luk’yanchuk, Igor and Triscone, Jean-Marc and Íñiguez, Jorge}, year={2016}, month=jun, pages={524–528} }