Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Nguyen, T. H. D., Galej, W. P., Bai, X., Savva, C. G., Newman, A. J., Scheres, S. H. W., & Nagai, K. (2015). The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature, 523(7558), 47–52.

Authors 7
  1. Thi Hoang Duong Nguyen (first)
  2. Wojciech P. Galej (additional)
  3. Xiao-chen Bai (additional)
  4. Christos G. Savva (additional)
  5. Andrew J. Newman (additional)
  6. Sjors H. W. Scheres (additional)
  7. Kiyoshi Nagai (additional)
References 75 Referenced 211
  1. Will, C. L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011) / Cold Spring Harb. Perspect. Biol. by CL Will (2011)
  2. Chan, S. P. & Cheng, S. C. The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation. J. Biol. Chem. 280, 31190–31199 (2005) (10.1074/jbc.M505060200) / J. Biol. Chem. by SP Chan (2005)
  3. Fabrizio, P. et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol. Cell 36, 593–608 (2009) (10.1016/j.molcel.2009.09.040) / Mol. Cell by P Fabrizio (2009)
  4. Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013) (10.1038/nature12734) / Nature by SM Fica (2013)
  5. Newman, A. J. & Norman, C. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell 68, 743–754 (1992) (10.1016/0092-8674(92)90149-7) / Cell by AJ Newman (1992)
  6. Sontheimer, E. J. & Steitz, J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262, 1989–1996 (1993) (10.1126/science.8266094) / Science by EJ Sontheimer (1993)
  7. Stevens, S. W. et al. Biochemical and genetic analyses of the U5, U6, and U4/U6.U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. RNA 7, 1543–1553 (2001) / RNA by SW Stevens (2001)
  8. Gottschalk, A. et al. Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP. EMBO J. 18, 4535–4548 (1999) (10.1093/emboj/18.16.4535) / EMBO J. by A Gottschalk (1999)
  9. Turner, I. A., Norman, C. M., Churcher, M. J. & Newman, A. J. Dissection of Prp8 protein defines multiple interactions with crucial RNA sequences in the catalytic core of the spliceosome. RNA 12, 375–386 (2006) (10.1261/rna.2229706) / RNA by IA Turner (2006)
  10. Galej, W. P., Oubridge, C., Newman, A. J. & Nagai, K. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493, 638–643 (2013) (10.1038/nature11843) / Nature by WP Galej (2013)
  11. Fabrizio. P., Laggerbauer, B., Lauber, J., Lane, W. S. & Lührmann, R. An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2. EMBO J. 16, 4092–4106 (1997) (10.1093/emboj/16.13.4092) / EMBO J. by P Fabrizio (1997)
  12. Small, E. C., Leggett, S. R., Winans, A. A. & Staley, J. P. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol. Cell 23, 389–399 (2006) (10.1016/j.molcel.2006.05.043) / Mol. Cell by EC Small (2006)
  13. Bartels. C., Urlaub, H., Lührmann, R. & Fabrizio P. Mutagenesis suggests several roles of Snu114p in pre-mRNA splicing. J. Biol. Chem. 278, 28324–28334 (2003) (10.1074/jbc.M303043200) / J. Biol. Chem. by C Bartels (2003)
  14. Raghunathan, P. L. & Guthrie, C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr. Biol. 8, 847–855 (1998) (10.1016/S0960-9822(07)00345-4) / Curr. Biol. by PL Raghunathan (1998)
  15. Laggerbauer, B., Achsel, T. & Lührmann, R. The human U5–200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc. Natl Acad. Sci. USA 95, 4188–4192 (1998) (10.1073/pnas.95.8.4188) / Proc. Natl Acad. Sci. USA by B Laggerbauer (1998)
  16. Liu, S., Rauhut, R., Vornlocher, H. P. & Lührmann, R. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA 12, 1418–1430 (2006) (10.1261/rna.55406) / RNA by S Liu (2006)
  17. van Nues, R. W. & Beggs, J. D. Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae. Genetics 157, 1451–1467 (2001) (10.1093/genetics/157.4.1451) / Genetics by RW van Nues (2001)
  18. Sander, B. et al. Organization of core spliceosomal components U5 snRNA loop I and U4/U6 Di-snRNP within U4/U6.U5 Tri-snRNP as revealed by electron cryomicroscopy. Mol. Cell 24, 267–278 (2006) (10.1016/j.molcel.2006.08.021) / Mol. Cell by B Sander (2006)
  19. Häcker, I. et al. Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy. Nature Struct. Mol. Biol. 15, 1206–1212 (2008) (10.1038/nsmb.1506) / Nature Struct. Mol. Biol. by I Häcker (2008)
  20. McMullan, G. et al. Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109, 1144–1147 (2009) (10.1016/j.ultramic.2009.05.005) / Ultramicroscopy by G McMullan (2009)
  21. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584–590 (2013) (10.1038/nmeth.2472) / Nature Methods by X Li (2013)
  22. Scheres, S. H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012) (10.1016/j.jmb.2011.11.010) / J. Mol. Biol. by SH Scheres (2012)
  23. Bai, X. C., McMullan, G. & Scheres, S. H. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015) (10.1016/j.tibs.2014.10.005) / Trends Biochem. Sci. by XC Bai (2015)
  24. Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. Elife 3, e03665 (2014) (10.7554/eLife.03665) / Elife by SH Scheres (2014)
  25. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nature Methods 9, 853–854 (2012) (10.1038/nmeth.2115) / Nature Methods by SH Scheres (2012)
  26. Jørgensen, R. et al. Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase. Nature Struct. Biol. 10, 379–385 (2003) (10.1038/nsb923) / Nature Struct. Biol. by R Jørgensen (2003)
  27. Grainger, R. J., Barrass, J. D., Jacquier, A., Rain, J. C. & Beggs, J. D. Physical and genetic interactions of yeast Cwc21p, an ortholog of human SRm300/SRRM2, suggest a role at the catalytic center of the spliceosome. RNA 15, 2161–2173 (2009) (10.1261/rna.1908309) / RNA by RJ Grainger (2009)
  28. Dix, I., Russell, C. S., O'Keefe, R. T., Newman, A. J. & Beggs, J. D. Protein-RNA interactions in the U5 snRNP of Saccharomyces cerevisiae. RNA 4, 1675–1686 (1998) / RNA by I Dix (1998)
  29. Reuter, K., Nottrott, S., Fabrizio, P., Lührmann, R. & Ficner, R. Identification, characterization and crystal structure analysis of the human spliceosomal U5 snRNP-specific 15 kD protein. J. Mol. Biol. 294, 515–525 (1999) (10.1006/jmbi.1999.3258) / J. Mol. Biol. by K Reuter (1999)
  30. Maeder, C., Kutach, A. K. & Guthrie, C. ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nature Struct. Mol. Biol. 16, 42–48 (2009) (10.1038/nsmb.1535) / Nature Struct. Mol. Biol. by C Maeder (2009)
  31. Nguyen, T. H. D. et al. Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure 21, 910–919 (2013) (10.1016/j.str.2013.04.017) / Structure by THD Nguyen (2013)
  32. Mozaffari-Jovin, S. et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341, 80–84 (2013) (10.1126/science.1237515) / Science by S Mozaffari-Jovin (2013)
  33. Liu, S. et al. Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science 316, 115–120 (2007) (10.1126/science.1137924) / Science by S Liu (2007)
  34. Schultz, A., Nottrott, S., Hartmuth, K. & Lührmann, R. RNA structural requirements for the association of the spliceosomal hPrp31 protein with the U4 and U4atac small nuclear ribonucleoproteins. J. Biol. Chem. 281, 28278–28286 (2006) (10.1074/jbc.M603350200) / J. Biol. Chem. by A Schultz (2006)
  35. Ayadi, L. et al. Functional and structural characterization of the Prp3 binding domain of the yeast Prp4 splicing factor. J. Mol. Biol. 284, 673–687 (1998) (10.1006/jmbi.1998.2183) / J. Mol. Biol. by L Ayadi (1998)
  36. Korneta, I., Magnus, M. & Bujnicki, J. M. Structural bioinformatics of the human spliceosomal proteome. Nucleic Acids Res. 40, 7046–7065 (2012) (10.1093/nar/gks347) / Nucleic Acids Res. by I Korneta (2012)
  37. Nottrott, S., Urlaub, H. & Lührmann, R. Hierarchical, clustered protein interactions with U4/U6 snRNA: a biochemical role for U4/U6 proteins. EMBO J. 21, 5527–5538 (2002) (10.1093/emboj/cdf544) / EMBO J. by S Nottrott (2002)
  38. Galisson, F. & Legrain, P. The biochemical defects of prp4–1 and prp6–1 yeast splicing mutants reveal that the PRP6 protein is required for the accumulation of the [U4/U6.U5] tri-snRNP. Nucleic Acids Res. 21, 1555–1562 (1993) (10.1093/nar/21.7.1555) / Nucleic Acids Res. by F Galisson (1993)
  39. Makarov, E. M., Makarova, O. V., Achsel, T. & Lührmann, R. The human homologue of the yeast splicing factor prp6p contains multiple TPR elements and is stably associated with the U5 snRNP via protein-protein interactions. J. Mol. Biol. 298, 567–575 (2000) (10.1006/jmbi.2000.3685) / J. Mol. Biol. by EM Makarov (2000)
  40. Boon, K. L. et al. Prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nature Struct. Mol. Biol. 14, 1077–1083 (2007) (10.1038/nsmb1303) / Nature Struct. Mol. Biol. by KL Boon (2007)
  41. Mozaffari-Jovin, S. et al. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev. 26, 2422–2434 (2012) (10.1101/gad.200949.112) / Genes Dev. by S Mozaffari-Jovin (2012)
  42. Hahn, D., Kudla, G., Tollervey, D. & Beggs, J. D. Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev. 26, 2408–2421 (2012) (10.1101/gad.199307.112) / Genes Dev. by D Hahn (2012)
  43. Büttner, K., Nehring, S. & Hofner, K. P. Structural basis for DNA duplex separation by a superfamily‐2 helicase. Nature Struct. Mol. Biol. 14, 647–652 (2007) (10.1038/nsmb1246) / Nature Struct. Mol. Biol. by K Büttner (2007)
  44. Tourigny, D. S., Fernández, I. S., Kelley, A. C. & Ramakrishnan, V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340, 1235490 (2013) (10.1126/science.1235490) / Science by DS Tourigny (2013)
  45. Lin. J, Gagnon, M. G., Bulkley, D. & Steitz, T. A. Conformational changes of elongation factor G on the ribosome during tRNA translocation. Cell 160, 219–227 (2015) (10.1016/j.cell.2014.11.049) / Cell by Lin. J (2015)
  46. Kuhn, A. N. & Brow, D. A. Suppressors of a cold-sensitive mutation in yeast U4 RNA define five domains in the splicing factor Prp8 that influence spliceosome activation. Genetics 155, 1667–1682 (2000) (10.1093/genetics/155.4.1667) / Genetics by AN Kuhn (2000)
  47. Li, Z. & Brow, D. A. A spontaneous duplication in U6 spliceosomal RNA uncouples the early and late functions of the ACAGA element in vivo. RNA 2, 879–894 (1996) / RNA by Z Li (1996)
  48. Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008) (10.1126/science.1153803) / Science by N Toor (2008)
  49. Fica, S. M., Mefford, M. A., Piccirilli, J. A. & Staley, J. P. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nature Struct. Mol. Biol. 21, 464–471 (2013) (10.1038/nsmb.2815) / Nature Struct. Mol. Biol. by SM Fica (2013)
  50. Sharp, P. A. Five easy pieces. Science 254, 663 (1991) (10.1126/science.1948046) / Science by PA Sharp (1991)
  51. Schreieck, A. et al. RNA polymerase II termination involves C-terminal domain tyrosine dephosphorylation by CPF subunit Glc7. Nature Struct. Mol. Biol. 21, 175–179 (2014) (10.1038/nsmb.2753) / Nature Struct. Mol. Biol. by A Schreieck (2014)
  52. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003) (10.1016/S1047-8477(03)00069-8) / J. Struct. Biol. by JA Mindell (2003)
  53. Elmlund, H., Elmlund, D. & Bengio, S. PRIME: probabilistic initial 3D model generation for single-particle cryo-electron microscopy. Structure 21, 1299–1306 (2013) (10.1016/j.str.2013.07.002) / Structure by H Elmlund (2013)
  54. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nature Methods 11, 63–65 (2014) (10.1038/nmeth.2727) / Nature Methods by A Kucukelbir (2014)
  55. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013) (10.1016/j.ultramic.2013.06.004) / Ultramicroscopy by S Chen (2013)
  56. Scheres, S. H. W., Nuñez-Ramirez, R., Sorzano, C. O. S., Carazo, J. M. & Marabini, R. Image processing for electron microscopy single-particle analysis using Xmipp. Nature Protocols 3, 977–990 (2008) (10.1038/nprot.2008.62) / Nature Protocols by SHW Scheres (2008)
  57. Tang, G. et al. EMAN2: an extensive image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007) (10.1016/j.jsb.2006.05.009) / J. Struct. Biol. by G Tang (2007)
  58. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007) (10.1016/j.jsb.2006.06.010) / J. Struct. Biol. by TD Goddard (2007)
  59. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010) (10.1107/S0907444910007493) / Acta Crystallogr. D by P Emsley (2010)
  60. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008) (10.1186/1471-2105-9-40) / BMC Bioinformatics by Y Zhang (2008)
  61. Malmström, L. et al. Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology. PLoS Biol. 5, e76 (2007) (10.1371/journal.pbio.0050076) / PLoS Biol. by L Malmström (2007)
  62. Wu, X. H., Chen, R. C., Gao, Y. & Wu, Y. D. The effect of Asp-His-Ser/Thr-Trp tetrad on the thermostability of WD40-repeat proteins. Biochemistry 49, 10237–10245 (2010) (10.1021/bi101321y) / Biochemistry by XH Wu (2010)
  63. Rother, M. et al. ModeRNA server: an online tool for modeling RNA 3D structures. Bioinformatics 27, 2441–2442 (2011) (10.1093/bioinformatics/btr400) / Bioinformatics by M Rother (2011)
  64. Dobbyn, H. C. et al. Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Biochem. Biophys. Res. Commun. 360, 857–862 (2007) (10.1016/j.bbrc.2007.06.163) / Biochem. Biophys. Res. Commun. by HC Dobbyn (2007)
  65. Leung, A. K., Nagai, K. & Li, J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473, 536–539 (2011) (10.1038/nature09956) / Nature by AK Leung (2011)
  66. Chanfreau, G., Elela, S. A., Ares, M., Jr & Guthrie, C. Alternative 3′-end processing of U5 snRNA by RNase III. Genes Dev. 11, 2741–2751 (1997) (10.1101/gad.11.20.2741) / Genes Dev. by G Chanfreau (1997)
  67. Zhou, L. et al. Crystal structures of the Lsm complex bound to the 3′end sequence of U6 small nuclear RNA. Nature 506, 116–120 (2014) (10.1038/nature12803) / Nature by L Zhou (2014)
  68. Query, C. C. & Konarska, M. M. Suppression of multiple substrate mutations by spliceosomal prp8 alleles suggests functional correlations with ribosomal ambiguity mutants. Mol. Cell 14, 343–354 (2004) (10.1016/S1097-2765(04)00217-5) / Mol. Cell by CC Query (2004)
  69. Umen, J. G. & Guthrie, C. Mutagenesis of the yeast gene PRP8 reveals domains governing the specificity and fidelity of 3′ splice site selection. Genetics 143, 723–739 (1996) (10.1093/genetics/143.2.723) / Genetics by JG Umen (1996)
  70. Liu, L., Query, C. C. & Konarska, M. M. Opposing classes of prp8 alleles modulate the transition between the catalytic steps of pre-mRNA splicing. Nature Struct. Mol. Biol. 14, 519–526 (2007) (10.1038/nsmb1240) / Nature Struct. Mol. Biol. by L Liu (2007)
  71. Dagher, S. F. & Fu, X. D. Evidence for a role of Sky1p-mediated phosphorylation in 3′ splice site recognition involving both Prp8 and Prp17/Slu4. RNA 7, 1284–1297 (2001) (10.1017/S1355838201016077) / RNA by SF Dagher (2001)
  72. Ben-Yehuda, S. et al. Extensive genetic interactions between PRP8 and PRP17/CDC40, two yeast genes involved in pre-mRNA splicing and cell cycle progression. Genetics 154, 61–71 (2000) (10.1093/genetics/154.1.61) / Genetics by S Ben-Yehuda (2000)
  73. Collins, C. A. & Guthrie, C. Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev. 13, 1970–1982 (1999) (10.1101/gad.13.15.1970) / Genes Dev. by CA Collins (1999)
  74. Siatecka, M., Reyes, J. L. & Konarska, M. M. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Genes Dev. 13, 1983–1993 (1999) (10.1101/gad.13.15.1983) / Genes Dev. by M Siatecka (1999)
  75. Kuhn, A. N., Li, Z. & Brow, D. A. Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome. Mol. Cell 3, 65–75 (1999) (10.1016/S1097-2765(00)80175-6) / Mol. Cell by AN Kuhn (1999)
Dates
Type When
Created 10 years, 1 month ago (June 24, 2015, 4:22 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:32 p.m.)
Indexed 4 weeks, 1 day ago (July 23, 2025, 8:21 a.m.)
Issued 10 years, 1 month ago (June 24, 2015)
Published 10 years, 1 month ago (June 24, 2015)
Published Online 10 years, 1 month ago (June 24, 2015)
Published Print 10 years, 1 month ago (July 1, 2015)
Funders 0

None

@article{Nguyen_2015, title={The architecture of the spliceosomal U4/U6.U5 tri-snRNP}, volume={523}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature14548}, DOI={10.1038/nature14548}, number={7558}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Nguyen, Thi Hoang Duong and Galej, Wojciech P. and Bai, Xiao-chen and Savva, Christos G. and Newman, Andrew J. and Scheres, Sjors H. W. and Nagai, Kiyoshi}, year={2015}, month=jun, pages={47–52} }