Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Allegretti, M., Klusch, N., Mills, D. J., Vonck, J., Kühlbrandt, W., & Davies, K. M. (2015). Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature, 521(7551), 237–240.

Authors 6
  1. Matteo Allegretti (first)
  2. Niklas Klusch (additional)
  3. Deryck J. Mills (additional)
  4. Janet Vonck (additional)
  5. Werner Kühlbrandt (additional)
  6. Karen M. Davies (additional)
References 45 Referenced 239
  1. Pogoryelov, D. et al. Engineering rotor ring stoichiometries in ATP synthases. Proc. Natl Acad. Sci. USA 109, E1599–E1608 (2012) (10.1073/pnas.1120027109) / Proc. Natl Acad. Sci. USA by D Pogoryelov (2012)
  2. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1 ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994) (10.1038/370621a0) / Nature by JP Abrahams (1994)
  3. Davies, K. M. et al. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl Acad. Sci. USA 108, 14121–14126 (2011) (10.1073/pnas.1103621108) / Proc. Natl Acad. Sci. USA by KM Davies (2011)
  4. Mitome, N. et al. Essential arginine residue of the Fo-a subunit in FoF1-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the Fo proton channel. Biochem. J. 430, 171–177 (2010) (10.1042/BJ20100621) / Biochem. J. by N Mitome (2010)
  5. Cain, B. D. & Simoni, R. D. Interaction between Glu-219 and His-245 within the a-subunit of F1Fo-ATPase in Escherichia coli. J. Biol. Chem. 263, 6602–6612 (1988) / J. Biol. Chem. by BD Cain (1988)
  6. van Lis, R., Mendoza-Hernández, G., Groth, G. & Atteia, A. New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiol. 144, 1190–1199 (2007) (10.1104/pp.106.094060) / Plant Physiol. by R van Lis (2007)
  7. Symersky, J. et al. Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nature Struct. Mol. Biol. 19, 485–491 (2012) (10.1038/nsmb.2284) / Nature Struct. Mol. Biol. by J Symersky (2012)
  8. Rees, D. M., Leslie, A. G. & Walker, J. E. The structure of the membrane extrinsic region of bovine ATP synthase. Proc. Natl Acad. Sci. USA 106, 21597–21601 (2009) (10.1073/pnas.0910365106) / Proc. Natl Acad. Sci. USA by DM Rees (2009)
  9. Andrade, M. A., Petosa, C., O’Donoghue, S. I., Muller, C. W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18 (2001) (10.1006/jmbi.2001.4624) / J. Mol. Biol. by MA Andrade (2001)
  10. Jiang, W. & Fillingame, R. H. Interacting helical faces of subunits a and c in the F1F0 ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc. Natl Acad. Sci. USA 95, 6607–6612 (1998) (10.1073/pnas.95.12.6607) / Proc. Natl Acad. Sci. USA by W Jiang (1998)
  11. Moore, K. J. & Fillingame, R. H. Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. J. Biol. Chem. 283, 31726–31735 (2008) (10.1074/jbc.M803848200) / J. Biol. Chem. by KJ Moore (2008)
  12. Hakulinen, J. K. et al. A structural study on the architecture of the bacterial ATP synthase Fo motor. Proc. Natl Acad. Sci. USA 109, E2050–E2056 (2012) (10.1073/pnas.1203971109) / Proc. Natl Acad. Sci. USA by JK Hakulinen (2012)
  13. Lau, W. C. Y. & Rubinstein, J. L. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481, 214–218 (2012) (10.1038/nature10699) / Nature by WCY Lau (2012)
  14. Schwem, B. E. & Fillingame, R. H. Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four-helix bundle. J. Biol. Chem. 281, 37861–37867 (2006) (10.1074/jbc.M607453200) / J. Biol. Chem. by BE Schwem (2006)
  15. Senes, A., Engel, D. E. & DeGrado, W. F. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14, 465–479 (2004) (10.1016/j.sbi.2004.07.007) / Curr. Opin. Struct. Biol. by A Senes (2004)
  16. Hoppe, J., Schairer, H. U., Friedl, P. & Sebald, W. An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel. FEBS Lett. 145, 21–29 (1982) (10.1016/0014-5793(82)81198-8) / FEBS Lett. by J Hoppe (1982)
  17. Hatch, L. P., Cox, G. B. & Howitt, S. M. The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J. Biol. Chem. 270, 29407–29412 (1995) (10.1074/jbc.270.49.29407) / J. Biol. Chem. by LP Hatch (1995)
  18. Angevine, C. A. & Fillingame, R. H. Aqueous access channels in subunit a of rotary ATP synthase. J. Biol. Chem. 278, 6066–6074 (2003) (10.1074/jbc.M210199200) / J. Biol. Chem. by CA Angevine (2003)
  19. Pogoryelov, D. et al. Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases. Nature Chem. Biol. 6, 891–899 (2010) (10.1038/nchembio.457) / Nature Chem. Biol. by D Pogoryelov (2010)
  20. Moore, K. J., Angevine, C. A., Vincent, O. D., Schwem, B. E. & Fillingame, R. H. The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism. J. Biol. Chem. 283, 13044–13052 (2008) (10.1074/jbc.M800900200) / J. Biol. Chem. by KJ Moore (2008)
  21. Steed, P. R. & Fillingame, R. H. Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm. J. Biol. Chem. 289, 2127–2138 (2014) (10.1074/jbc.M113.527879) / J. Biol. Chem. by PR Steed (2014)
  22. Junge, W., Lill, H. & Engelbrecht, S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22, 420–423 (1997) (10.1016/S0968-0004(97)01129-8) / Trends Biochem. Sci. by W Junge (1997)
  23. Matthies, D. et al. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nature Commun. 5, http://dx.doi.org/10.1038/ncomms6286 (2014) (10.1038/ncomms6286)
  24. van Lis, R., González-Halphen, D. & Atteia, A. Divergence of the mitochondrial electron transport chains from the green alga Chlamydomonas reinhardtii and its colorless close relative Polytomella. Biochim. Biophys. Acta 1708, 23–34 (2005) (10.1016/j.bbabio.2004.12.010) / Biochim. Biophys. Acta by R van Lis (2005)
  25. Atteia, A., van Lis, R., Ramírez, J. & González-Halphen, D. Polytomella spp. growth on ethanol: extracellular pH affects the accumulation of mitochondrial cytochrome c550 . Eur. J. Biochem. 267, 2850–2858 (2000) (10.1046/j.1432-1327.2000.01288.x) / Eur. J. Biochem. by A Atteia (2000)
  26. Vázquez-Acevedo, M. et al. The mitochondrial ATP synthase of chlorophycean algae contains eight subunits of unknown origin involved in the formation of an atypical stator-stalk and in the dimerization of the complex. J. Bioenerg. Biomembr. 38, 271–282 (2006) (10.1007/s10863-006-9046-x) / J. Bioenerg. Biomembr. by M Vázquez-Acevedo (2006)
  27. Villavicencio-Queijeiro, A. et al. The fully-active and structurally-stable form of the mitochondrial ATP synthase of Polytomella sp. is dimeric. J. Bioenerg. Biomembr. 41, 1–13 (2009) (10.1007/s10863-009-9203-0) / J. Bioenerg. Biomembr. by A Villavicencio-Queijeiro (2009)
  28. Mills, D. J., Vitt, S., Strauss, M., Shima, S. & Vonck, J. De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. eLife 2, e00218 (2013) (10.7554/eLife.00218) / eLife by DJ Mills (2013)
  29. Allegretti, M., Mills, D. J., McMullan, G., Kühlbrandt, W. & Vonck, J. Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. eLife 3, e01963 (2014) (10.7554/eLife.01963) / eLife by M Allegretti (2014)
  30. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584–590 (2013) (10.1038/nmeth.2472) / Nature Methods by X Li (2013)
  31. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003) (10.1016/S1047-8477(03)00069-8) / J. Struct. Biol. by JA Mindell (2003)
  32. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012) (10.1016/j.jsb.2012.09.006) / J. Struct. Biol. by SHW Scheres (2012)
  33. Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife 3, e3080 (2014) (10.7554/eLife.03080) / eLife by W Wong (2014)
  34. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999) (10.1006/jsbi.1999.4174) / J. Struct. Biol. by SJ Ludtke (1999)
  35. Davies, K. M., Anselmi, C., Wittig, I., Faraldo-Gomez, J. D. & Kuhlbrandt, W. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl Acad. Sci. USA 109, 13602–13607 (2012) (10.1073/pnas.1204593109) / Proc. Natl Acad. Sci. USA by KM Davies (2012)
  36. Scheres, S. H. W. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014) (10.7554/eLife.03665) / eLife by SHW Scheres (2014)
  37. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013) (10.1016/j.ultramic.2013.06.004) / Ultramicroscopy by S Chen (2013)
  38. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nature Methods 11, 63–65 (2014) (10.1038/nmeth.2727) / Nature Methods by A Kucukelbir (2014)
  39. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007) (10.1016/j.jsb.2006.05.009) / J. Struct. Biol. by G Tang (2007)
  40. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007) (10.1093/bioinformatics/btm404) / Bioinformatics by MA Larkin (2007)
  41. Schroeder, G. F., Brunger, A. T. & Levitt, M. Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15, 1630–1641 (2007) (10.1016/j.str.2007.09.021) / Structure by GF Schroeder (2007)
  42. Pettersen, E. F. et al. UCSF Chimera: a visualisation system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004) (10.1002/jcc.20084) / J. Comput. Chem. by EF Pettersen (2004)
  43. Wada, T., Long, J. C., Zhang, D. & Vik, S. B. A novel labeling approach supports the five-transmembrane model of subunit a of the Escherichia coli ATP synthase. J. Biol. Chem. 274, 17353–17357 (1999) (10.1074/jbc.274.24.17353) / J. Biol. Chem. by T Wada (1999)
  44. Careaga, C. L. & Falke, J. J. Thermal motions of surface alpha-helices in the D-galactose chemosensory receptor: detection by disulfide trapping. J. Mol. Biol. 226, 1219–1235 (1992) (10.1016/0022-2836(92)91063-U) / J. Mol. Biol. by CL Careaga (1992)
  45. Vincent, O. D., Schwem, B. E., Steed, P. R., Jiang, W. & Fillingame, R. H. Fluidity of structure and swiveling of helices in the subunit c ring of Escherichia coli ATP synthase as revealed by cysteine-cysteine cross-linking. J. Biol. Chem. 282, 33788–33794 (2007). (10.1074/jbc.M706904200) / J. Biol. Chem. by OD Vincent (2007)
Dates
Type When
Created 10 years, 5 months ago (Feb. 24, 2015, 7:12 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:28 p.m.)
Indexed 2 days, 20 hours ago (Aug. 19, 2025, 5:58 a.m.)
Issued 10 years, 5 months ago (Feb. 23, 2015)
Published 10 years, 5 months ago (Feb. 23, 2015)
Published Online 10 years, 5 months ago (Feb. 23, 2015)
Published Print 10 years, 3 months ago (May 1, 2015)
Funders 0

None

@article{Allegretti_2015, title={Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase}, volume={521}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature14185}, DOI={10.1038/nature14185}, number={7551}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Allegretti, Matteo and Klusch, Niklas and Mills, Deryck J. and Vonck, Janet and Kühlbrandt, Werner and Davies, Karen M.}, year={2015}, month=feb, pages={237–240} }