Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476–480.

Authors 7
  1. Nam Joong Jeon (first)
  2. Jun Hong Noh (additional)
  3. Woon Seok Yang (additional)
  4. Young Chan Kim (additional)
  5. Seungchan Ryu (additional)
  6. Jangwon Seo (additional)
  7. Sang Il Seok (additional)
References 27 Referenced 5,936
  1. Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012) (10.1126/science.1228604) / Science by MM Lee (2012)
  2. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012) / Sci. Rep. by H-S Kim (2012)
  3. Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013) (10.1038/nphoton.2013.80) / Nature Photon. by JH Heo (2013)
  4. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013) (10.1038/nature12340) / Nature by J Burschka (2013)
  5. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 501, 395–398 (2013) (10.1038/nature12509) / Nature by M Liu (2013)
  6. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013) (10.1021/nl400349b) / Nano Lett. by JH Noh (2013)
  7. Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film solar cells. Energy Environ. Sci. 6, 1739–1743 (2013) (10.1039/c3ee40810h) / Energy Environ. Sci. by JM Ball (2013)
  8. Jeon, N. J. et al. o-Methoxy substituents in Spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. J. Am. Chem. Soc. 136, 7837–7840 (2014) (10.1021/ja502824c) / J. Am. Chem. Soc. by NJ Jeon (2014)
  9. Ryu, S. et al. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7, 2614–2618 (2014) (10.1039/C4EE00762J) / Energy Environ. Sci. by S Ryu (2014)
  10. Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2014) (10.1038/nphoton.2013.341) / Nature Photon. by O Malinkiewicz (2014)
  11. Lee, J.-W. et al. High-efficiency perovskitesolar cells based on the black polymorph of HC(NH2)2PbI3 . Adv. Mater. 26, 4991–4998 (2014) (10.1002/adma.201401137) / Adv. Mater. by J-W Lee (2014)
  12. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014) (10.1126/science.1254050) / Science by H Zhou (2014)
  13. Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014) (10.1038/nmat4014) / Nature Mater. by NJ Jeon (2014)
  14. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014) (10.1021/jz500113x) / J. Phys. Chem. Lett. by HJ Snaith (2014)
  15. Kim, H. S. & Park, N.-G. Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effect of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5, 2927–2934 (2014) (10.1021/jz501392m) / J. Phys. Chem. Lett. by HS Kim (2014)
  16. Eperon, G. E. et al. Formamidinium lead halide: a broad tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014) (10.1039/c3ee43822h) / Energy Environ. Sci. by GE Eperon (2014)
  17. Koh, T. M. et al. Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014) (10.1021/jp411112k) / J. Phys. Chem. C by TM Koh (2014)
  18. Stoumpos, C. C. et al. Semiconducting tin and lead iodide perovskites with organic cations: phase transition, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013) (10.1021/ic401215x) / Inorg. Chem. by CC Stoumpos (2013)
  19. Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014) (10.1002/anie.201309361) / Angew. Chem. Int. Ed. by N Pellet (2014)
  20. Xing, G. et al. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013) (10.1126/science.1243167) / Science by G Xing (2013)
  21. Scaife, D. E., Weller, P. F. & Fisher, W. G. Crystal preparation and properties of cesium tin(II) trihalides. J. Solid State Chem. 9, 308–314 (1974) (10.1016/0022-4596(74)90088-7) / J. Solid State Chem. by DE Scaife (1974)
  22. Chung, I. et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012) (10.1021/ja301539s) / J. Am. Chem. Soc. by I Chung (2012)
  23. Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011) (10.1039/c0dt01601b) / Dalton Trans. by Y Takahashi (2011)
  24. Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahetra tilting. Nano Lett. 14, 3608–3616 (2014) (10.1021/nl5012992) / Nano Lett. by A Amat (2014)
  25. Baek, I. C. et al. Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell. Electrochem. Commun. 11, 909–912 (2009) (10.1016/j.elecom.2009.02.026) / Electrochem. Commun. by IC Baek (2009)
  26. Seok, S. I. et al. Colloidal TiO2 nanocrystals prepared from peroxotitanium complex solutions: phase evolution from different precursors. J. Colloid Interf. Sci. 346, 66–71 (2010) (10.1016/j.jcis.2010.02.049) / J. Colloid Interf. Sci. by SI Seok (2010)
  27. Pang, S. et al. NH2CH = NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014) (10.1021/cm404006p) / Chem. Mater. by S Pang (2014)
Dates
Type When
Created 10 years, 8 months ago (Jan. 5, 2015, 6:28 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:28 p.m.)
Indexed 1 day, 11 hours ago (Sept. 4, 2025, 10:20 a.m.)
Issued 10 years, 8 months ago (Jan. 1, 2015)
Published 10 years, 8 months ago (Jan. 1, 2015)
Published Online 10 years, 7 months ago (Jan. 7, 2015)
Published Print 10 years, 8 months ago (Jan. 1, 2015)
Funders 0

None

@article{Jeon_2015, title={Compositional engineering of perovskite materials for high-performance solar cells}, volume={517}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature14133}, DOI={10.1038/nature14133}, number={7535}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Jeon, Nam Joong and Noh, Jun Hong and Yang, Woon Seok and Kim, Young Chan and Ryu, Seungchan and Seo, Jangwon and Seok, Sang Il}, year={2015}, month=jan, pages={476–480} }