Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Zhong, L., Wang, J., Sheng, H., Zhang, Z., & Mao, S. X. (2014). Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature, 512(7513), 177–180.

Authors 5
  1. Li Zhong (first)
  2. Jiangwei Wang (additional)
  3. Hongwei Sheng (additional)
  4. Ze Zhang (additional)
  5. Scott X. Mao (additional)
References 49 Referenced 427
  1. Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960) (10.1038/187869b0) / Nature by W Klement (1960)
  2. Greer, L. A. Metallic glasses. Science 267, 1947–1953 (1995) (10.1126/science.267.5206.1947) / Science by LA Greer (1995)
  3. Cohen, M. H. & Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959) (10.1063/1.1730566) / J. Chem. Phys. by MH Cohen (1959)
  4. Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969) (10.1080/00107516908204405) / Contemp. Phys. by D Turnbull (1969)
  5. Bhat, M. H. et al. Vitrification of a monatomic metallic liquid. Nature 448, 787–790 (2007) (10.1038/nature06044) / Nature by MH Bhat (2007)
  6. Johnson, W. L. Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Mater. Sci. Forum 225–227, 35–50 (1996) (10.4028/www.scientific.net/MSF.225-227.35) / Mater. Sci. Forum by WL Johnson (1996)
  7. Ding, S. Y. et al. Combinatorial development of bulk metallic glasses. Nature Mater. 13, 494–500 (2014) (10.1038/nmat3939) / Nature Mater. by SY Ding (2014)
  8. Johnson, W. L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81–134 (1986) (10.1016/0079-6425(86)90005-8) / Prog. Mater. Sci. by WL Johnson (1986)
  9. Davies, H. A., Aucote, J. & Hull, J. B. Amorphous nickel produced by splat quenching. Nature 246, 13–14 (1973) / Nature by HA Davies (1973)
  10. Lin, C.-J. & Spaepen, F. Fe-B glasses formed by picosecond pulsed laser quenching. Appl. Phys. Lett. 41, 721–723 (1982) (10.1063/1.93647) / Appl. Phys. Lett. by C-J Lin (1982)
  11. McCluskey, P. J. & Vlassak, J. J. Combinatorial nanocalorimetry. J. Mater. Res. 25, 2086–2100 (2010) (10.1557/jmr.2010.0286) / J. Mater. Res. by PJ McCluskey (2010)
  12. Aga, R. S., Morris, J. R., Hoyt, J. J. & Mendelev, M. Quantitative parameter-free prediction of simulated crystal-nucleation times. Phys. Rev. Lett. 96, 245701 (2006) (10.1103/PhysRevLett.96.245701) / Phys. Rev. Lett. by RS Aga (2006)
  13. Trudu, F., Donadio, D. & Parrinello, M. Freezing of a Lennard–Jones fluid: from nucleation to spinodal regime. Phys. Rev. Lett. 97, 105701 (2006) (10.1103/PhysRevLett.97.105701) / Phys. Rev. Lett. by F Trudu (2006)
  14. Broughton, J. Q., Gilmer, G. H. & Jackson, K. A. Crystallization rates of a Lennard–Jones liquid. Phys. Rev. Lett. 49, 1496–1500 (1982) (10.1103/PhysRevLett.49.1496) / Phys. Rev. Lett. by JQ Broughton (1982)
  15. Fujime, S. Electron diffraction at low temperature. II. Radial distribution analysis of metastable structure of metal films prepared by low temperature condensation. Jpn. J. Appl. Phys. 5, 778–787 (1966) (10.1143/JJAP.5.778) / Jpn. J. Appl. Phys. by S Fujime (1966)
  16. Suslick, K. S., Choe, S.-B., Cichowlas, A. A. & Grinstaff, M. W. Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991) (10.1038/353414a0) / Nature by KS Suslick (1991)
  17. Hilsch, R. in Non-Crystalline Solids (ed. Fréchette, V. D. ) 348–373 (Wiley, 1960) / Non-Crystalline Solids by R Hilsch (1960)
  18. Sheng, H. W. et al. Polyamorphism in a metallic glass. Nature Mater. 6, 192–197 (2007) (10.1038/nmat1839) / Nature Mater. by HW Sheng (2007)
  19. Ichikawa, T. The assembly of hard spheres as a structure model of amorphous iron. Phys. Status Solidi A 29, 293–302 (1975) (10.1002/pssa.2210290132) / Phys. Status Solidi A by T Ichikawa (1975)
  20. Sachdev, S. & Nelson, D. R. Theory of the structure factor of metallic glasses. Phys. Rev. Lett. 53, 1947–1950 (1984) (10.1103/PhysRevLett.53.1947) / Phys. Rev. Lett. by S Sachdev (1984)
  21. Yamamoto, R., Matsuoka, H. & Doyama, M. Structural relaxation of the dense random packing model for amorphous iron. Phys. Status Solidi A 45, 305–314 (1978) (10.1002/pssa.2210450136) / Phys. Status Solidi A by R Yamamoto (1978)
  22. Dzugutov, M. Glass formation in a simple monatomic liquid with icosahedral inherent local order. Phys. Rev. A 46, R2984–R2987 (1992) (10.1103/PhysRevA.46.R2984) / Phys. Rev. A by M Dzugutov (1992)
  23. Leung, P. K. & Wright, J. G. Structural investigations of amorphous transition element films. I. Scanning electron diffraction study of cobalt. Phil. Mag. 30, 185–194 (1974) (10.1080/14786439808206544) / Phil. Mag. by PK Leung (1974)
  24. Ichikawa, T. Electron diffraction study of the local atomic arrangement in amorphous iron and nickel films. Phys. Status Solidi A 19, 707–716 (1973) (10.1002/pssa.2210190237) / Phys. Status Solidi A by T Ichikawa (1973)
  25. Jones, R. E., Templeton, J. A., Wagner, G. J., Olmsted, D. & Modine, N. A. Electron transport enhanced molecular dynamics for metals and semi-metals. Int. J. Numer. Methods Eng. 83, 940–967 (2010) (10.1002/nme.2857) / Int. J. Numer. Methods Eng. by RE Jones (2010)
  26. Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nature Mater. 10, 202–207 (2011) (10.1038/nmat2934) / Nature Mater. by T Siegrist (2011)
  27. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007) (10.1038/nmat2009) / Nature Mater. by M Wuttig (2007)
  28. Stillinger, F. H. & Weber, T. A. Packing structures and transitions in liquids and solids. Science 225, 983–989 (1984) (10.1126/science.225.4666.983) / Science by FH Stillinger (1984)
  29. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983) (10.1103/PhysRevB.28.784) / Phys. Rev. B by PJ Steinhardt (1983)
  30. Bauder, U. & Fromm, E. Absorption of nitrogen and oxygen by vapour-deposited tantalum films. Surf. Sci. 52, 415–425 (1975) (10.1016/0039-6028(75)90070-9) / Surf. Sci. by U Bauder (1975)
  31. Haas, T. W., Jackson, A. G. & Hooker, M. P. Adsorption on niobium (110), tantalum (110), and vanadium (110) surfaces. J. Chem. Phys. 46, 3025–3033 (1967) (10.1063/1.1841173) / J. Chem. Phys. by TW Haas (1967)
  32. Pollard, J. H. & Danforth, W. E. LEED observations of epitaxially grown thorium on (100) tantalum. J. Appl. Phys. 39, 4019–4020 (1968) (10.1063/1.1656892) / J. Appl. Phys. by JH Pollard (1968)
  33. Hopkins, B. J., Leggett, M. & Watts, G. D. A. RHEED study of the adsorption of oxygen, hydrogen, nitrogen and water vapour on the (110) face of tantalum. Surf. Sci. 28, 581–597 (1971) (10.1016/0039-6028(71)90065-3) / Surf. Sci. by BJ Hopkins (1971)
  34. Daw, M. S. & Baskes, M. I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984) (10.1103/PhysRevB.29.6443) / Phys. Rev. B by MS Daw (1984)
  35. Sheng, H. W., Kramer, M. J., Cadien, A., Fujita, T. & Chen, M. W. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83, 134118 (2011) (10.1103/PhysRevB.83.134118) / Phys. Rev. B by HW Sheng (2011)
  36. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999) (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994) (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  38. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993) (10.1103/PhysRevB.47.558) / Phys. Rev. B by G Kresse (1993)
  39. Brommer, P. & Gähler, F. Potfit: effective potentials from ab initio data. Model. Simul. Mater. Sci. Eng. 15, 295–304 (2007) (10.1088/0965-0393/15/3/008) / Model. Simul. Mater. Sci. Eng. by P Brommer (2007)
  40. Cheng, Y. Q., Ma, E. & Sheng, H. W. Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 102, 245501 (2009) (10.1103/PhysRevLett.102.245501) / Phys. Rev. Lett. by YQ Cheng (2009)
  41. Li, D. Y., Wu, Y. Y., Fan, R., Yang, P. D. & Majumdar, A. Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186–3188 (2003) (10.1063/1.1619221) / Appl. Phys. Lett. by DY Li (2003)
  42. Schelling, P. K., Phillpot, S. R. & Keblinski, P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65, 144306 (2002) (10.1103/PhysRevB.65.144306) / Phys. Rev. B by PK Schelling (2002)
  43. Ho, C. Y., Powell, R. W. & Liley, P. E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279–421 (1972) (10.1063/1.3253100) / J. Phys. Chem. Ref. Data by CY Ho (1972)
  44. Tari, A. The Specific Heat of Matter at Low Temperatures 71 (Imperial College Press, 2003) (10.1142/p254) / The Specific Heat of Matter at Low Temperatures by A Tari (2003)
  45. Allen, P. B. Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460–1463 (1987) (10.1103/PhysRevLett.59.1460) / Phys. Rev. Lett. by PB Allen (1987)
  46. Lin, Z. B., Zhigilei, L. V. & Celli, V. Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008) (10.1103/PhysRevB.77.075133) / Phys. Rev. B by ZB Lin (2008)
  47. Tang, C. G. & Harrowell, P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Mater. 12, 507–511 (2013) (10.1038/nmat3631) / Nature Mater. by CG Tang (2013)
  48. Kim, Y.-W., Lin, H.-M. & Kelly, T. F. Amorphous solidification of pure metals in submicron spheres. Acta Metall. 37, 247–255 (1989) (10.1016/0001-6160(89)90283-6) / Acta Metall. by Y-W Kim (1989)
  49. Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope 3rd edn (Springer, 2011) (10.1007/978-1-4419-9583-4) / Electron Energy-Loss Spectroscopy in the Electron Microscope by RF Egerton (2011)
Dates
Type When
Created 11 years ago (Aug. 5, 2014, 8:07 a.m.)
Deposited 3 years, 4 months ago (April 15, 2022, 9:27 a.m.)
Indexed 2 minutes ago (Aug. 21, 2025, 3:15 a.m.)
Issued 11 years ago (Aug. 6, 2014)
Published 11 years ago (Aug. 6, 2014)
Published Online 11 years ago (Aug. 6, 2014)
Published Print 11 years ago (Aug. 14, 2014)
Funders 0

None

@article{Zhong_2014, title={Formation of monatomic metallic glasses through ultrafast liquid quenching}, volume={512}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature13617}, DOI={10.1038/nature13617}, number={7513}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Zhong, Li and Wang, Jiangwei and Sheng, Hongwei and Zhang, Ze and Mao, Scott X.}, year={2014}, month=aug, pages={177–180} }