Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
85
Referenced
1,063
-
Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)
(
10.1103/PhysRevLett.71.2022
) / Phys. Rev. Lett. by MS Kushwaha (1993) -
Sigalas, M. M. & Economou, E. N. Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993)
(
10.1016/0038-1098(93)90888-T
) / Solid State Commun. by MM Sigalas (1993) -
Martínez-Sala, R. et al. Sound attenuation by sculpture. Nature 378, 241 (1995)
(
10.1038/378241a0
) / Nature by R Martínez-Sala (1995) -
Sanchez-Perez, J. V. et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328 (1998)
(
10.1103/PhysRevLett.80.5325
) / Phys. Rev. Lett. by JV Sanchez-Perez (1998) -
Montero de Espinosa, F. R., Jimenez, E. & Torres, M. Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998)
(
10.1103/PhysRevLett.80.1208
) / Phys. Rev. Lett. by FR Montero de Espinosa (1998) -
Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000)
(
10.1126/science.289.5485.1734
) / Science by ZY Liu (2000) -
Vasseur, J. O. et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001)
(
10.1103/PhysRevLett.86.3012
) / Phys. Rev. Lett. by JO Vasseur (2001) -
Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G. & Thomas, E. L. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)This paper describes the experimental realization of small-scale phononic crystals that control high-frequency hypersonic phonons.
(
10.1103/PhysRevLett.94.115501
) / Phys. Rev. Lett. by T Gorishnyy (2005) -
Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nature Mater. 5, 830–836 (2006)
(
10.1038/nmat1727
) / Nature Mater. by W Cheng (2006) -
Thomas, E. L., Gorishnyy, T. & Maldovan, M. Phononics: colloidal crystals go hypersonic. Nature Mater. 5, 773–774 (2006)
(
10.1038/nmat1744
) / Nature Mater. by EL Thomas (2006) -
Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structure. Nature Nanotechnol. 5, 718–721 (2010)
(
10.1038/nnano.2010.149
) / Nature Nanotechnol. by J-K Yu (2010) -
Maldovan, M. & Thomas, E. L. Simultaneous localization of phonons and photons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006)
(
10.1063/1.2216885
) / Appl. Phys. Lett. by M Maldovan (2006) -
Liang, B., Yuan, B. & Cheng, J. C. Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009)
(
10.1103/PhysRevLett.103.104301
) / Phys. Rev. Lett. by B Liang (2009) -
Liang, B., Guo, X. S., Tu, J., Zhang, D. & Chen, J. C. An acoustic rectifier. Nature Mater. 9, 989–992 (2010)
(
10.1038/nmat2881
) / Nature Mater. by B Liang (2010) -
Li, B. Acoustics: now you hear me, now you don’t. Nature Mater. 9, 962–963 (2010)
(
10.1038/nmat2906
) / Nature Mater. by B Li (2010) -
Li, X.-F. et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011)This paper describes the experimetal realization of an acoustic diode by breaking spatial inversion symmetry in phononic crystals.
(
10.1103/PhysRevLett.106.084301
) / Phys. Rev. Lett. by X-F Li (2011) -
Boechler, N., Theocharis, G. & Daraio, C. Bifurcation-based acoustic switching and rectification. Nature Mater. 10, 665–668 (2011)
(
10.1038/nmat3072
) / Nature Mater. by N Boechler (2011) -
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006)
(
10.1126/science.1125907
) / Science by JB Pendry (2006) -
Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006)
(
10.1126/science.1126493
) / Science by U Leonhardt (2006) -
Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)
(
10.1088/1367-2630/8/10/248
) / New J. Phys. by GW Milton (2006) -
Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45 (2007)
(
10.1088/1367-2630/9/3/045
) / New J. Phys. by SA Cummer (2007) -
Chen, H. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)
(
10.1063/1.2803315
) / Appl. Phys. Lett. by H Chen (2007) -
Cummer, S. A. et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008)
(
10.1103/PhysRevLett.100.024301
) / Phys. Rev. Lett. by SA Cummer (2008) -
Chen, H. & Chan, C. T. Acoustic cloaking and transformation acoustics. J. Phys. D 43, 113001 (2010)
(
10.1088/0022-3727/43/11/113001
) / J. Phys. D by H Chen (2010) -
Torrent, D. & Dehesa-Sanchez, J. Acoustic cloaking in two-dimensions: a feasible approach. New J. Phys. 10, 063015 (2008)
(
10.1088/1367-2630/10/6/063015
) / New J. Phys. by D Torrent (2008) -
Cheng, Y., Yang, F., Xu, J. Y. & Liu, X. J. A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl. Phys. Lett. 92, 151913 (2008)
(
10.1063/1.2903500
) / Appl. Phys. Lett. by Y Cheng (2008) -
Zhang, S., Cia, X. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011)This paper describes the experimental realization of acoustic cloaking shells for ultrasound waves using purpose-designed metamaterials.
(
10.1103/PhysRevLett.106.024301
) / Phys. Rev. Lett. by S Zhang (2011) -
Chan, C. T. Invisibility cloak for ultrasonic waves. Physics 4, 2 (2011)
(
10.1103/Physics.4.2
) / Physics by CT Chan (2011) -
Farhat, M., Enoch, S., Guenneau, S. & Movchan, A. B. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008)
(
10.1103/PhysRevLett.101.134501
) / Phys. Rev. Lett. by M Farhat (2008) -
Popa, B. I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 (2011)
(
10.1103/PhysRevLett.106.253901
) / Phys. Rev. Lett. by BI Popa (2011) -
Stenger, N., Wilhelm, M. & Wegener, M. Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012)
(
10.1103/PhysRevLett.108.014301
) / Phys. Rev. Lett. by N Stenger (2012) -
Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009)
(
10.1103/PhysRevLett.103.024301
) / Phys. Rev. Lett. by M Farhat (2009) -
Brun, M., Guenneau, S. & Movchan, A. B. Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94, 061903 (2009)
(
10.1063/1.3068491
) / Appl. Phys. Lett. by M Brun (2009) -
Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B. & Thieryy-Mieg, V. Confinement of acoustical vibrations in semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002)
(
10.1103/PhysRevLett.89.227402
) / Phys. Rev. Lett. by M Trigo (2002) -
Worlock, J. M. & Roukes, M. L. Son et lumière. Nature 421, 802–803 (2003)
(
10.1038/421802a
) / Nature by JM Worlock (2003) -
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)
(
10.1103/PhysRevLett.58.2059
) / Phys. Rev. Lett. by E Yablonovitch (1987) -
John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)
(
10.1103/PhysRevLett.58.2486
) / Phys. Rev. Lett. by S John (1987) -
Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)
(
10.1038/386143a0
) / Nature by JD Joannopoulos (1997) -
Maldovan, M. & Thomas, E. L. Periodic Structures and Interference Lithography: for Photonics, Phononics and Mechanics (Wiley, 2008)
(
10.1002/9783527625390
) / Periodic Structures and Interference Lithography: for Photonics, Phononics and Mechanics by M Maldovan (2008) -
Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009)This paper describes the experimental demonstration of phonon–photon coupling in planar ‘optomechanical’ crystals.
(
10.1038/nature08524
) / Nature by M Eichenfield (2009) -
Psarobas, I. E. et al. Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. Phys. Rev. B 82, 174303 (2010)
(
10.1103/PhysRevB.82.174303
) / Phys. Rev. B by IE Psarobas (2010) -
Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B. & Perrin, B. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light. Phys. Rev. Lett. 110, 037403 (2013)
(
10.1103/PhysRevLett.110.037403
) / Phys. Rev. Lett. by A Fainstein (2013) -
Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M. P. & Laude, V. Tailoring simultaneous photonic and phononic band gaps. J. Appl. Phys. 106, 074912 (2009)
(
10.1063/1.3243276
) / J. Appl. Phys. by S Sadat-Saleh (2009) -
Mohammadi, S., Eftekhar, A. A., Khelif, A. & Adibi, A. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Opt. Express 18, 9164–9172 (2010)
(
10.1364/OE.18.009164
) / Opt. Express by S Mohammadi (2010) -
Pennec, Y. et al. Simultaneous existence of phononic and photonic bandgaps in periodic crystal slabs. Opt. Express 18, 14301–14310 (2010)
(
10.1364/OE.18.014301
) / Opt. Express by Y Pennec (2010) -
Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Express 18, 14926–14943 (2010)
(
10.1364/OE.18.014926
) / Opt. Express by AH Safavi-Naeini (2010) -
Safavi-Naeini, A. H., Mayer Alegre, T. P., Winger, M. & Painter, O. Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010)
(
10.1063/1.3507288
) / Appl. Phys. Lett. by AH Safavi-Naeini (2010) -
Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011)
(
10.1103/PhysRevLett.106.203902
) / Phys. Rev. Lett. by E Gavartin (2011) -
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)
(
10.1038/nature10461
) / Nature by J Chan (2011) -
Safavi-Naeini, A. H. et al. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012)
(
10.1103/PhysRevLett.108.033602
) / Phys. Rev. Lett. by AH Safavi-Naeini (2012) -
Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)
(
10.1038/nature09933
) / Nature by AH Safavi-Naeini (2011) -
Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics of optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011)
(
10.1103/PhysRevLett.107.043603
) / Phys. Rev. Lett. by G Heinrich (2011) -
Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010)
(
10.1103/PhysRevLett.104.083901
) / Phys. Rev. Lett. by IS Grudinin (2010) -
Akimov, A. V. et al. Hypersonic modulation of light in three-dimensional photonic and phononic band gap materials. Phys. Rev. Lett. 101, 033902 (2008)
(
10.1103/PhysRevLett.101.033902
) / Phys. Rev. Lett. by AV Akimov (2008) -
Papanikolaou, N., Psarobas, I. E. & Stefanou, N. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Appl. Phys. Lett. 96, 231917 (2010)
(
10.1063/1.3453448
) / Appl. Phys. Lett. by N Papanikolaou (2010) -
Russell, P. S. J., Marin, E., Diez, A., Guenneau, S. & Movchan, A. B. Sonic band gaps in PCF preforms: enhancing the interaction of sound and light. Opt. Express 11, 2555–2560 (2003)
(
10.1364/OE.11.002555
) / Opt. Express by PSJ Russell (2003) -
Laude, V. et al. Phononic bandgap guidance of acoustic modes in photonic crystal fibers. Phys. Rev. B 71, 045107 (2005)
(
10.1103/PhysRevB.71.045107
) / Phys. Rev. B by V Laude (2005) -
Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Phys. 2, 388–392 (2006)
(
10.1038/nphys315
) / Nature Phys. by P Dainese (2006) -
Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. S. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Phys. 5, 276–280 (2009)
(
10.1038/nphys1217
) / Nature Phys. by MS Kang (2009) -
Li, B. W., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)
(
10.1103/PhysRevLett.93.184301
) / Phys. Rev. Lett. by BW Li (2004) -
Terraneo, M., Peyrard, M. & Casati, G. Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88, 094302 (2002)
(
10.1103/PhysRevLett.88.094302
) / Phys. Rev. Lett. by M Terraneo (2002) -
Wang, L. & Li, B. Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99, 177208 (2007)
(
10.1103/PhysRevLett.99.177208
) / Phys. Rev. Lett. by L Wang (2007) -
Wang, L. & Li, B. Phononics get hot. Phys. World 21, 27–29 (2008)
(
10.1088/2058-7058/21/03/31
) / Phys. World by L Wang (2008) -
Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006)This paper describes an experimental solid-state thermal diode formed by a non-uniform mass distribution in nanotubes.
(
10.1126/science.1132898
) / Science by CW Chang (2006) -
Yang, N., Li, N., Wang, L. & Li, B. Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Phys. Rev. B 76, 020301 (2007)
(
10.1103/PhysRevB.76.020301
) / Phys. Rev. B by N Yang (2007) -
Fan, C. Z., Gao, Y. & Huang, J. P. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)
(
10.1063/1.2951600
) / Appl. Phys. Lett. by CZ Fan (2008) -
Chen, T., Weng, C. N. & Chen, J. S. Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008)
(
10.1063/1.2988181
) / Appl. Phys. Lett. by T Chen (2008) -
Guenneau, S., Amra, C. & Veynante, D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012)
(
10.1364/OE.20.008207
) / Opt. Express by S Guenneau (2012) -
Narayana, S. & Sato, Y. Heat flux manipulation by engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)This paper describes the manipulation of heat conduction using newly developed thermal metamaterials.
(
10.1103/PhysRevLett.108.214303
) / Phys. Rev. Lett. by S Narayana (2012) -
Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)
(
10.1103/PhysRevLett.110.195901
) / Phys. Rev. Lett. by R Schittny (2013) -
Hicks, L. D. & Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)
(
10.1103/PhysRevB.47.12727
) / Phys. Rev. B by LD Hicks (1993) -
Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high-room temperature figures of merit. Nature 413, 597–602 (2001)
(
10.1038/35098012
) / Nature by R Venkatasubramanian (2001) -
Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002)
(
10.1126/science.1072886
) / Science by TC Harman (2002) -
Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004)
(
10.1126/science.1092963
) / Science by KF Hsu (2004) -
Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)
(
10.1103/PhysRevLett.96.045901
) / Phys. Rev. Lett. by W Kim (2006) -
Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)
(
10.1126/science.1156446
) / Science by B Poudel (2008) -
Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)
(
10.1038/nature06381
) / Nature by AI Hochbaum (2008) -
Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)
(
10.1038/nature06458
) / Nature by AI Boukai (2008) -
Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical structures. Nature 489, 414–418 (2012)This paper describes a highly efficient thermoelectric material obtained through the scattering of a wide range of phonons with different wavelengths.
(
10.1038/nature11439
) / Nature by K Biswas (2012) -
Chiritescu, C. et al. Ultra low thermal conductivity in disordered WSe2 crystals. Science 315, 351–353 (2007)
(
10.1126/science.1136494
) / Science by C Chiritescu (2007) -
Maldovan, M. Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 025902 (2013)
(
10.1103/PhysRevLett.110.025902
) / Phys. Rev. Lett. by M Maldovan (2013) -
Mingo, N., Hauser, D., Kobayashi, N. P., Plissonnier, M. & Shakouri, A. Nanoparticle in alloy approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711–715 (2009)
(
10.1021/nl8031982
) / Nano Lett. by N Mingo (2009) -
Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon germanium alloys: a first principle study. Phys. Rev. Lett. 106, 045901 (2011)
(
10.1103/PhysRevLett.106.045901
) / Phys. Rev. Lett. by J Garg (2011) -
Kundu, A., Mingo, N., Broido, D. A. & Stewart, D. A. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011)
(
10.1103/PhysRevB.84.125426
) / Phys. Rev. B by A Kundu (2011) -
Bilal, O. R. & Hussein, M. I. Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Phys. Rev. E 84, 065701 (2011)
(
10.1103/PhysRevE.84.065701
) / Phys. Rev. E by OR Bilal (2011)
Dates
Type | When |
---|---|
Created | 11 years, 9 months ago (Nov. 12, 2013, 7:05 a.m.) |
Deposited | 3 years, 4 months ago (April 19, 2022, 9:43 a.m.) |
Indexed | 12 hours, 20 minutes ago (Aug. 23, 2025, 9:32 p.m.) |
Issued | 11 years, 9 months ago (Nov. 13, 2013) |
Published | 11 years, 9 months ago (Nov. 13, 2013) |
Published Online | 11 years, 9 months ago (Nov. 13, 2013) |
Published Print | 11 years, 9 months ago (Nov. 14, 2013) |
@article{Maldovan_2013, title={Sound and heat revolutions in phononics}, volume={503}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature12608}, DOI={10.1038/nature12608}, number={7475}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Maldovan, Martin}, year={2013}, month=nov, pages={209–217} }