Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Maldovan, M. (2013). Sound and heat revolutions in phononics. Nature, 503(7475), 209–217.

Authors 1
  1. Martin Maldovan (first)
References 85 Referenced 1,063
  1. Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993) (10.1103/PhysRevLett.71.2022) / Phys. Rev. Lett. by MS Kushwaha (1993)
  2. Sigalas, M. M. & Economou, E. N. Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993) (10.1016/0038-1098(93)90888-T) / Solid State Commun. by MM Sigalas (1993)
  3. Martínez-Sala, R. et al. Sound attenuation by sculpture. Nature 378, 241 (1995) (10.1038/378241a0) / Nature by R Martínez-Sala (1995)
  4. Sanchez-Perez, J. V. et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328 (1998) (10.1103/PhysRevLett.80.5325) / Phys. Rev. Lett. by JV Sanchez-Perez (1998)
  5. Montero de Espinosa, F. R., Jimenez, E. & Torres, M. Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998) (10.1103/PhysRevLett.80.1208) / Phys. Rev. Lett. by FR Montero de Espinosa (1998)
  6. Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000) (10.1126/science.289.5485.1734) / Science by ZY Liu (2000)
  7. Vasseur, J. O. et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001) (10.1103/PhysRevLett.86.3012) / Phys. Rev. Lett. by JO Vasseur (2001)
  8. Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G. & Thomas, E. L. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)This paper describes the experimental realization of small-scale phononic crystals that control high-frequency hypersonic phonons. (10.1103/PhysRevLett.94.115501) / Phys. Rev. Lett. by T Gorishnyy (2005)
  9. Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nature Mater. 5, 830–836 (2006) (10.1038/nmat1727) / Nature Mater. by W Cheng (2006)
  10. Thomas, E. L., Gorishnyy, T. & Maldovan, M. Phononics: colloidal crystals go hypersonic. Nature Mater. 5, 773–774 (2006) (10.1038/nmat1744) / Nature Mater. by EL Thomas (2006)
  11. Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structure. Nature Nanotechnol. 5, 718–721 (2010) (10.1038/nnano.2010.149) / Nature Nanotechnol. by J-K Yu (2010)
  12. Maldovan, M. & Thomas, E. L. Simultaneous localization of phonons and photons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006) (10.1063/1.2216885) / Appl. Phys. Lett. by M Maldovan (2006)
  13. Liang, B., Yuan, B. & Cheng, J. C. Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009) (10.1103/PhysRevLett.103.104301) / Phys. Rev. Lett. by B Liang (2009)
  14. Liang, B., Guo, X. S., Tu, J., Zhang, D. & Chen, J. C. An acoustic rectifier. Nature Mater. 9, 989–992 (2010) (10.1038/nmat2881) / Nature Mater. by B Liang (2010)
  15. Li, B. Acoustics: now you hear me, now you don’t. Nature Mater. 9, 962–963 (2010) (10.1038/nmat2906) / Nature Mater. by B Li (2010)
  16. Li, X.-F. et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011)This paper describes the experimetal realization of an acoustic diode by breaking spatial inversion symmetry in phononic crystals. (10.1103/PhysRevLett.106.084301) / Phys. Rev. Lett. by X-F Li (2011)
  17. Boechler, N., Theocharis, G. & Daraio, C. Bifurcation-based acoustic switching and rectification. Nature Mater. 10, 665–668 (2011) (10.1038/nmat3072) / Nature Mater. by N Boechler (2011)
  18. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006) (10.1126/science.1125907) / Science by JB Pendry (2006)
  19. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006) (10.1126/science.1126493) / Science by U Leonhardt (2006)
  20. Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006) (10.1088/1367-2630/8/10/248) / New J. Phys. by GW Milton (2006)
  21. Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45 (2007) (10.1088/1367-2630/9/3/045) / New J. Phys. by SA Cummer (2007)
  22. Chen, H. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007) (10.1063/1.2803315) / Appl. Phys. Lett. by H Chen (2007)
  23. Cummer, S. A. et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008) (10.1103/PhysRevLett.100.024301) / Phys. Rev. Lett. by SA Cummer (2008)
  24. Chen, H. & Chan, C. T. Acoustic cloaking and transformation acoustics. J. Phys. D 43, 113001 (2010) (10.1088/0022-3727/43/11/113001) / J. Phys. D by H Chen (2010)
  25. Torrent, D. & Dehesa-Sanchez, J. Acoustic cloaking in two-dimensions: a feasible approach. New J. Phys. 10, 063015 (2008) (10.1088/1367-2630/10/6/063015) / New J. Phys. by D Torrent (2008)
  26. Cheng, Y., Yang, F., Xu, J. Y. & Liu, X. J. A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl. Phys. Lett. 92, 151913 (2008) (10.1063/1.2903500) / Appl. Phys. Lett. by Y Cheng (2008)
  27. Zhang, S., Cia, X. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011)This paper describes the experimental realization of acoustic cloaking shells for ultrasound waves using purpose-designed metamaterials. (10.1103/PhysRevLett.106.024301) / Phys. Rev. Lett. by S Zhang (2011)
  28. Chan, C. T. Invisibility cloak for ultrasonic waves. Physics 4, 2 (2011) (10.1103/Physics.4.2) / Physics by CT Chan (2011)
  29. Farhat, M., Enoch, S., Guenneau, S. & Movchan, A. B. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008) (10.1103/PhysRevLett.101.134501) / Phys. Rev. Lett. by M Farhat (2008)
  30. Popa, B. I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 (2011) (10.1103/PhysRevLett.106.253901) / Phys. Rev. Lett. by BI Popa (2011)
  31. Stenger, N., Wilhelm, M. & Wegener, M. Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012) (10.1103/PhysRevLett.108.014301) / Phys. Rev. Lett. by N Stenger (2012)
  32. Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009) (10.1103/PhysRevLett.103.024301) / Phys. Rev. Lett. by M Farhat (2009)
  33. Brun, M., Guenneau, S. & Movchan, A. B. Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94, 061903 (2009) (10.1063/1.3068491) / Appl. Phys. Lett. by M Brun (2009)
  34. Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B. & Thieryy-Mieg, V. Confinement of acoustical vibrations in semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002) (10.1103/PhysRevLett.89.227402) / Phys. Rev. Lett. by M Trigo (2002)
  35. Worlock, J. M. & Roukes, M. L. Son et lumière. Nature 421, 802–803 (2003) (10.1038/421802a) / Nature by JM Worlock (2003)
  36. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987) (10.1103/PhysRevLett.58.2059) / Phys. Rev. Lett. by E Yablonovitch (1987)
  37. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987) (10.1103/PhysRevLett.58.2486) / Phys. Rev. Lett. by S John (1987)
  38. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997) (10.1038/386143a0) / Nature by JD Joannopoulos (1997)
  39. Maldovan, M. & Thomas, E. L. Periodic Structures and Interference Lithography: for Photonics, Phononics and Mechanics (Wiley, 2008) (10.1002/9783527625390) / Periodic Structures and Interference Lithography: for Photonics, Phononics and Mechanics by M Maldovan (2008)
  40. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009)This paper describes the experimental demonstration of phonon–photon coupling in planar ‘optomechanical’ crystals. (10.1038/nature08524) / Nature by M Eichenfield (2009)
  41. Psarobas, I. E. et al. Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. Phys. Rev. B 82, 174303 (2010) (10.1103/PhysRevB.82.174303) / Phys. Rev. B by IE Psarobas (2010)
  42. Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B. & Perrin, B. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light. Phys. Rev. Lett. 110, 037403 (2013) (10.1103/PhysRevLett.110.037403) / Phys. Rev. Lett. by A Fainstein (2013)
  43. Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M. P. & Laude, V. Tailoring simultaneous photonic and phononic band gaps. J. Appl. Phys. 106, 074912 (2009) (10.1063/1.3243276) / J. Appl. Phys. by S Sadat-Saleh (2009)
  44. Mohammadi, S., Eftekhar, A. A., Khelif, A. & Adibi, A. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Opt. Express 18, 9164–9172 (2010) (10.1364/OE.18.009164) / Opt. Express by S Mohammadi (2010)
  45. Pennec, Y. et al. Simultaneous existence of phononic and photonic bandgaps in periodic crystal slabs. Opt. Express 18, 14301–14310 (2010) (10.1364/OE.18.014301) / Opt. Express by Y Pennec (2010)
  46. Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Express 18, 14926–14943 (2010) (10.1364/OE.18.014926) / Opt. Express by AH Safavi-Naeini (2010)
  47. Safavi-Naeini, A. H., Mayer Alegre, T. P., Winger, M. & Painter, O. Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010) (10.1063/1.3507288) / Appl. Phys. Lett. by AH Safavi-Naeini (2010)
  48. Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011) (10.1103/PhysRevLett.106.203902) / Phys. Rev. Lett. by E Gavartin (2011)
  49. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011) (10.1038/nature10461) / Nature by J Chan (2011)
  50. Safavi-Naeini, A. H. et al. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012) (10.1103/PhysRevLett.108.033602) / Phys. Rev. Lett. by AH Safavi-Naeini (2012)
  51. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011) (10.1038/nature09933) / Nature by AH Safavi-Naeini (2011)
  52. Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics of optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011) (10.1103/PhysRevLett.107.043603) / Phys. Rev. Lett. by G Heinrich (2011)
  53. Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010) (10.1103/PhysRevLett.104.083901) / Phys. Rev. Lett. by IS Grudinin (2010)
  54. Akimov, A. V. et al. Hypersonic modulation of light in three-dimensional photonic and phononic band gap materials. Phys. Rev. Lett. 101, 033902 (2008) (10.1103/PhysRevLett.101.033902) / Phys. Rev. Lett. by AV Akimov (2008)
  55. Papanikolaou, N., Psarobas, I. E. & Stefanou, N. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Appl. Phys. Lett. 96, 231917 (2010) (10.1063/1.3453448) / Appl. Phys. Lett. by N Papanikolaou (2010)
  56. Russell, P. S. J., Marin, E., Diez, A., Guenneau, S. & Movchan, A. B. Sonic band gaps in PCF preforms: enhancing the interaction of sound and light. Opt. Express 11, 2555–2560 (2003) (10.1364/OE.11.002555) / Opt. Express by PSJ Russell (2003)
  57. Laude, V. et al. Phononic bandgap guidance of acoustic modes in photonic crystal fibers. Phys. Rev. B 71, 045107 (2005) (10.1103/PhysRevB.71.045107) / Phys. Rev. B by V Laude (2005)
  58. Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Phys. 2, 388–392 (2006) (10.1038/nphys315) / Nature Phys. by P Dainese (2006)
  59. Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. S. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Phys. 5, 276–280 (2009) (10.1038/nphys1217) / Nature Phys. by MS Kang (2009)
  60. Li, B. W., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004) (10.1103/PhysRevLett.93.184301) / Phys. Rev. Lett. by BW Li (2004)
  61. Terraneo, M., Peyrard, M. & Casati, G. Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88, 094302 (2002) (10.1103/PhysRevLett.88.094302) / Phys. Rev. Lett. by M Terraneo (2002)
  62. Wang, L. & Li, B. Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99, 177208 (2007) (10.1103/PhysRevLett.99.177208) / Phys. Rev. Lett. by L Wang (2007)
  63. Wang, L. & Li, B. Phononics get hot. Phys. World 21, 27–29 (2008) (10.1088/2058-7058/21/03/31) / Phys. World by L Wang (2008)
  64. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006)This paper describes an experimental solid-state thermal diode formed by a non-uniform mass distribution in nanotubes. (10.1126/science.1132898) / Science by CW Chang (2006)
  65. Yang, N., Li, N., Wang, L. & Li, B. Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Phys. Rev. B 76, 020301 (2007) (10.1103/PhysRevB.76.020301) / Phys. Rev. B by N Yang (2007)
  66. Fan, C. Z., Gao, Y. & Huang, J. P. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008) (10.1063/1.2951600) / Appl. Phys. Lett. by CZ Fan (2008)
  67. Chen, T., Weng, C. N. & Chen, J. S. Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008) (10.1063/1.2988181) / Appl. Phys. Lett. by T Chen (2008)
  68. Guenneau, S., Amra, C. & Veynante, D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012) (10.1364/OE.20.008207) / Opt. Express by S Guenneau (2012)
  69. Narayana, S. & Sato, Y. Heat flux manipulation by engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)This paper describes the manipulation of heat conduction using newly developed thermal metamaterials. (10.1103/PhysRevLett.108.214303) / Phys. Rev. Lett. by S Narayana (2012)
  70. Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013) (10.1103/PhysRevLett.110.195901) / Phys. Rev. Lett. by R Schittny (2013)
  71. Hicks, L. D. & Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993) (10.1103/PhysRevB.47.12727) / Phys. Rev. B by LD Hicks (1993)
  72. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high-room temperature figures of merit. Nature 413, 597–602 (2001) (10.1038/35098012) / Nature by R Venkatasubramanian (2001)
  73. Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002) (10.1126/science.1072886) / Science by TC Harman (2002)
  74. Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004) (10.1126/science.1092963) / Science by KF Hsu (2004)
  75. Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006) (10.1103/PhysRevLett.96.045901) / Phys. Rev. Lett. by W Kim (2006)
  76. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008) (10.1126/science.1156446) / Science by B Poudel (2008)
  77. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008) (10.1038/nature06381) / Nature by AI Hochbaum (2008)
  78. Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008) (10.1038/nature06458) / Nature by AI Boukai (2008)
  79. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical structures. Nature 489, 414–418 (2012)This paper describes a highly efficient thermoelectric material obtained through the scattering of a wide range of phonons with different wavelengths. (10.1038/nature11439) / Nature by K Biswas (2012)
  80. Chiritescu, C. et al. Ultra low thermal conductivity in disordered WSe2 crystals. Science 315, 351–353 (2007) (10.1126/science.1136494) / Science by C Chiritescu (2007)
  81. Maldovan, M. Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 025902 (2013) (10.1103/PhysRevLett.110.025902) / Phys. Rev. Lett. by M Maldovan (2013)
  82. Mingo, N., Hauser, D., Kobayashi, N. P., Plissonnier, M. & Shakouri, A. Nanoparticle in alloy approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711–715 (2009) (10.1021/nl8031982) / Nano Lett. by N Mingo (2009)
  83. Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon germanium alloys: a first principle study. Phys. Rev. Lett. 106, 045901 (2011) (10.1103/PhysRevLett.106.045901) / Phys. Rev. Lett. by J Garg (2011)
  84. Kundu, A., Mingo, N., Broido, D. A. & Stewart, D. A. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011) (10.1103/PhysRevB.84.125426) / Phys. Rev. B by A Kundu (2011)
  85. Bilal, O. R. & Hussein, M. I. Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Phys. Rev. E 84, 065701 (2011) (10.1103/PhysRevE.84.065701) / Phys. Rev. E by OR Bilal (2011)
Dates
Type When
Created 11 years, 9 months ago (Nov. 12, 2013, 7:05 a.m.)
Deposited 3 years, 4 months ago (April 19, 2022, 9:43 a.m.)
Indexed 12 hours, 20 minutes ago (Aug. 23, 2025, 9:32 p.m.)
Issued 11 years, 9 months ago (Nov. 13, 2013)
Published 11 years, 9 months ago (Nov. 13, 2013)
Published Online 11 years, 9 months ago (Nov. 13, 2013)
Published Print 11 years, 9 months ago (Nov. 14, 2013)
Funders 0

None

@article{Maldovan_2013, title={Sound and heat revolutions in phononics}, volume={503}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature12608}, DOI={10.1038/nature12608}, number={7475}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Maldovan, Martin}, year={2013}, month=nov, pages={209–217} }