Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

He, Y., Fang, J., Taatjes, D. J., & Nogales, E. (2013). Structural visualization of key steps in human transcription initiation. Nature, 495(7442), 481–486.

Authors 4
  1. Yuan He (first)
  2. Jie Fang (additional)
  3. Dylan J. Taatjes (additional)
  4. Eva Nogales (additional)
References 63 Referenced 241
  1. Matsui, T., Segall, J., Weil, P. A. & Roeder, R. G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992–11996 (1980) (10.1016/S0021-9258(19)70232-4) / J. Biol. Chem. by T Matsui (1980)
  2. Roeder, R. G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327–335 (1996) (10.1016/0968-0004(96)10050-5) / Trends Biochem. Sci. by RG Roeder (1996)
  3. Goodrich, J. A., Cutler, G. & Tjian, R. Contacts in context: promoter specificity and macromolecular interactions in transcription. Cell 84, 825–830 (1996) (10.1016/S0092-8674(00)81061-2) / Cell by JA Goodrich (1996)
  4. Kornberg, R. D. The molecular basis of eukaryotic transcription. Proc. Natl Acad. Sci. USA 104, 12955–12961 (2007) (10.1073/pnas.0704138104) / Proc. Natl Acad. Sci. USA by RD Kornberg (2007)
  5. Cramer, P. et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37, 337–352 (2008) (10.1146/annurev.biophys.37.032807.130008) / Annu. Rev. Biophys. by P Cramer (2008)
  6. Grünberg, S., Warfield, L. & Hahn, S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nature Struct. Mol. Biol. 19, 788–796 (2012) (10.1038/nsmb.2334) / Nature Struct. Mol. Biol. by S Grünberg (2012)
  7. Thomas, M. C. & Chiang, C. M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006) (10.1080/10409230600648736) / Crit. Rev. Biochem. Mol. Biol. by MC Thomas (2006)
  8. Andel, F., III, Ladurner, A. G., Inouye, C., Tjian, R. & Nogales, E. Three-dimensional structure of the human TFIID-IIA-IIB complex. Science 286, 2153–2156 (1999) (10.1126/science.286.5447.2153) / Science by F Andel III (1999)
  9. Chung, W. H. et al. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Mol. Cell 12, 1003–1013 (2003) (10.1016/S1097-2765(03)00387-3) / Mol. Cell by WH Chung (2003)
  10. Bernecky, C., Grob, P., Ebmeier, C. C., Nogales, E. & Taatjes, D. J. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol. 9, e1000603 (2011) (10.1371/journal.pbio.1000603) / PLoS Biol. by C Bernecky (2011)
  11. Liu, X., Bushnell, D. A., Wang, D., Calero, G. & Kornberg, R. D. Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism. Science 327, 206–209 (2010) (10.1126/science.1182015) / Science by X Liu (2010)
  12. Kostrewa, D. et al. RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462, 323–330 (2009) (10.1038/nature08548) / Nature by D Kostrewa (2009)
  13. Bleichenbacher, M., Tan, S. & Richmond, T. J. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J. Mol. Biol. 332, 783–793 (2003) (10.1016/S0022-2836(03)00887-8) / J. Mol. Biol. by M Bleichenbacher (2003)
  14. Tsai, F. T. & Sigler, P. B. Structural basis of preinitiation complex assembly on human pol II promoters. EMBO J. 19, 25–36 (2000) (10.1093/emboj/19.1.25) / EMBO J. by FT Tsai (2000)
  15. Sainsbury, S., Niesser, J. & Cramer, P. Structure and function of the initially transcribing RNA polymerase II–TFIIB complex. Nature 493, 437–440 (2013) (10.1038/nature11715) / Nature by S Sainsbury (2013)
  16. Gaiser, F., Tan, S. & Richmond, T. J. Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 Å resolution. J. Mol. Biol. 302, 1119–1127 (2000) (10.1006/jmbi.2000.4110) / J. Mol. Biol. by F Gaiser (2000)
  17. Chen, Z. A. et al. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J. 29, 717–726 (2010) (10.1038/emboj.2009.401) / EMBO J. by ZA Chen (2010)
  18. Eichner, J., Chen, H. T., Warfield, L. & Hahn, S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. EMBO J. 29, 706–716 (2010) (10.1038/emboj.2009.386) / EMBO J. by J Eichner (2010)
  19. Robert, F., Forget, D., Li, J., Greenblatt, J. & Coulombe, B. Localization of subunits of transcription factors IIE and IIF immediately upstream of the transcriptional initiation site of the adenovirus major late promoter. J. Biol. Chem. 271, 8517–8520 (1996) (10.1074/jbc.271.15.8517) / J. Biol. Chem. by F Robert (1996)
  20. Tyree, C. M. et al. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 7, 1254–1265 (1993) (10.1101/gad.7.7a.1254) / Genes Dev. by CM Tyree (1993)
  21. Tan, S., Garrett, K. P., Conaway, R. C. & Conaway, J. W. Cryptic DNA-binding domain in the C terminus of RNA polymerase II general transcription factor RAP30. Proc. Natl Acad. Sci. USA 91, 9808–9812 (1994) (10.1073/pnas.91.21.9808) / Proc. Natl Acad. Sci. USA by S Tan (1994)
  22. Ghazy, M. A., Brodie, S. A., Ammerman, M. L., Ziegler, L. M. & Ponticelli, A. S. Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II. Mol. Cell. Biol. 24, 10975–10985 (2004) (10.1128/MCB.24.24.10975-10985.2004) / Mol. Cell. Biol. by MA Ghazy (2004)
  23. Yan, Q., Moreland, R. J., Conaway, J. W. & Conaway, R. C. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 35668–35675 (1999) (10.1074/jbc.274.50.35668) / J. Biol. Chem. by Q Yan (1999)
  24. Forget, D. et al. RAP74 induces promoter contacts by RNA polymerase II upstream and downstream of a DNA bend centered on the TATA box. Proc. Natl Acad. Sci. USA 94, 7150–7155 (1997) (10.1073/pnas.94.14.7150) / Proc. Natl Acad. Sci. USA by D Forget (1997)
  25. Orlicky, S. M., Tran, P. T., Sayre, M. H. & Edwards, A. M. Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem. 276, 10097–10102 (2001) (10.1074/jbc.M003165200) / J. Biol. Chem. by SM Orlicky (2001)
  26. Grohmann, D. et al. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell 43, 263–274 (2011) (10.1016/j.molcel.2011.05.030) / Mol. Cell by D Grohmann (2011)
  27. Buratowski, S., Sopta, M., Greenblatt, J. & Sharp, P. A. RNA polymerase II-associated proteins are required for a DNA conformation change in the transcription initiation complex. Proc. Natl Acad. Sci. USA 88, 7509–7513 (1991) (10.1073/pnas.88.17.7509) / Proc. Natl Acad. Sci. USA by S Buratowski (1991)
  28. Giardina, C. & Lis, J. T. DNA melting on yeast RNA polymerase II promoters. Science 261, 759–762 (1993) (10.1126/science.8342041) / Science by C Giardina (1993)
  29. Chen, H. T. & Hahn, S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119, 169–180 (2004) (10.1016/j.cell.2004.09.028) / Cell by HT Chen (2004)
  30. Freire-Picos, M. A., Krishnamurthy, S., Sun, Z. W. & Hampsey, M. Evidence that the Tfg1/Tfg2 dimer interface of TFIIF lies near the active center of the RNA polymerase II initiation complex. Nucleic Acids Res. 33, 5045–5052 (2005) (10.1093/nar/gki825) / Nucleic Acids Res. by MA Freire-Picos (2005)
  31. Sun, Z. W. & Hampsey, M. Identification of the gene (SSU71/TFG1) encoding the largest subunit of transcription factor TFIIF as a suppressor of a TFIIB mutation in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 92, 3127–3131 (1995) (10.1073/pnas.92.8.3127) / Proc. Natl Acad. Sci. USA by ZW Sun (1995)
  32. Fernández-Tornero, C. et al. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J. 29, 3762–3772 (2010) (10.1038/emboj.2010.266) / EMBO J. by C Fernández-Tornero (2010)
  33. Cheung, A. C. & Cramer, P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471, 249–253 (2011) (10.1038/nature09785) / Nature by AC Cheung (2011)
  34. Goodrich, J. A. & Tjian, R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77, 145–156 (1994) (10.1016/0092-8674(94)90242-9) / Cell by JA Goodrich (1994)
  35. Conaway, R. C. & Conaway, J. W. General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62, 161–190 (1993) (10.1146/annurev.bi.62.070193.001113) / Annu. Rev. Biochem. by RC Conaway (1993)
  36. Andrecka, J. et al. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res. 37, 5803–5809 (2009) (10.1093/nar/gkp601) / Nucleic Acids Res. by J Andrecka (2009)
  37. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001) (10.1126/science.1059495) / Science by AL Gnatt (2001)
  38. Chakraborty, A. et al. Opening and closing of the bacterial RNA polymerase clamp. Science 337, 591–595 (2012) (10.1126/science.1218716) / Science by A Chakraborty (2012)
  39. Gibbons, B. J. et al. Subunit architecture of general transcription factor TFIIH. Proc. Natl Acad. Sci. USA 109, 1949–1954 (2012) (10.1073/pnas.1105266109) / Proc. Natl Acad. Sci. USA by BJ Gibbons (2012)
  40. Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008) (10.1016/j.cell.2008.04.030) / Cell by L Fan (2008)
  41. Kim, T. K., Ebright, R. H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1421 (2000) (10.1126/science.288.5470.1418) / Science by TK Kim (2000)
  42. Revyakin, A. et al. Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev. 26, 1691–1702 (2012) (10.1101/gad.194936.112) / Genes Dev. by A Revyakin (2012)
  43. Juven-Gershon, T., Cheng, S. & Kadonaga, J. T. Rational design of a super core promoter that enhances gene expression. Nature Methods 3, 917–922 (2006) (10.1038/nmeth937) / Nature Methods by T Juven-Gershon (2006)
  44. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005) (10.1016/j.jsb.2005.03.010) / J. Struct. Biol. by C Suloway (2005)
  45. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009) (10.1016/j.jsb.2009.01.002) / J. Struct. Biol. by GC Lander (2009)
  46. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007) (10.1016/j.jsb.2006.05.009) / J. Struct. Biol. by G Tang (2007)
  47. Hohn, M. et al. SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007) (10.1016/j.jsb.2006.07.003) / J. Struct. Biol. by M Hohn (2007)
  48. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007) (10.1016/j.jsb.2006.06.010) / J. Struct. Biol. by TD Goddard (2007)
  49. Groft, C. M., Uljon, S. N., Wang, R. & Werner, M. H. Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Proc. Natl Acad. Sci. USA 95, 9117–9122 (1998) (10.1073/pnas.95.16.9117) / Proc. Natl Acad. Sci. USA by CM Groft (1998)
  50. Chen, H. T., Warfield, L. & Hahn, S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nature Struct. Mol. Biol. 14, 696–703 (2007) (10.1038/nsmb1272) / Nature Struct. Mol. Biol. by HT Chen (2007)
  51. Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009) (10.1101/gad.1767009) / Genes Dev. by MT Knuesel (2009)
  52. Pal, M., Ponticelli, A. S. & Luse, D. S. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol. Cell 19, 101–110 (2005) (10.1016/j.molcel.2005.05.024) / Mol. Cell by M Pal (2005)
  53. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009) (10.1016/j.jsb.2009.01.004) / J. Struct. Biol. by NR Voss (2009)
  54. Mallick, S. P., Carragher, B., Potter, C. S. & Kriegman, D. J. ACE: automated CTF estimation. Ultramicroscopy 104, 8–29 (2005) (10.1016/j.ultramic.2005.02.004) / Ultramicroscopy by SP Mallick (2005)
  55. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003) (10.1016/S1047-8477(03)00069-8) / J. Struct. Biol. by JA Mindell (2003)
  56. Sorzano, C. O. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004) (10.1016/j.jsb.2004.06.006) / J. Struct. Biol. by CO Sorzano (2004)
  57. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996) (10.1006/jsbi.1996.0004) / J. Struct. Biol. by M van Heel (1996)
  58. Kostek, S. A. et al. Molecular architecture and conformational flexibility of human RNA polymerase II. Structure 14, 1691–1700 (2006) (10.1016/j.str.2006.09.011) / Structure by SA Kostek (2006)
  59. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996) (10.1006/jsbi.1996.0030) / J. Struct. Biol. by J Frank (1996)
  60. Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007) (10.1016/j.jsb.2006.06.006) / J. Struct. Biol. by JB Heymann (2007)
  61. Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186–191 (2012) (10.1038/nature10774) / Nature by GC Lander (2012)
  62. van Dijk, M. & Bonvin, A. M. 3D-DART: a DNA structure modelling server. Nucleic Acids Res. 37, W235–W239 (2009) (10.1093/nar/gkp287) / Nucleic Acids Res. by M van Dijk (2009)
  63. Lu, X. J. & Olson, W. K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nature Protocols 3, 1213–1227 (2008) (10.1038/nprot.2008.104) / Nature Protocols by XJ Lu (2008)
Dates
Type When
Created 12 years, 5 months ago (Feb. 26, 2013, 12:27 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:09 p.m.)
Indexed 3 weeks ago (July 30, 2025, 9:59 a.m.)
Issued 12 years, 5 months ago (Feb. 27, 2013)
Published 12 years, 5 months ago (Feb. 27, 2013)
Published Online 12 years, 5 months ago (Feb. 27, 2013)
Published Print 12 years, 5 months ago (March 1, 2013)
Funders 0

None

@article{He_2013, title={Structural visualization of key steps in human transcription initiation}, volume={495}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature11991}, DOI={10.1038/nature11991}, number={7442}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={He, Yuan and Fang, Jie and Taatjes, Dylan J. and Nogales, Eva}, year={2013}, month=feb, pages={481–486} }