Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Tomioka, K., Yoshimura, M., & Fukui, T. (2012). A III–V nanowire channel on silicon for high-performance vertical transistors. Nature, 488(7410), 189–192.

Authors 3
  1. Katsuhiro Tomioka (first)
  2. Masatoshi Yoshimura (additional)
  3. Takashi Fukui (additional)
References 29 Referenced 664
  1. Ferain, I., Colinge, A. A. & Colinge, J.-P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011) (10.1038/nature10676) / Nature by I Ferain (2011)
  2. del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011) (10.1038/nature10677) / Nature by JA del Alamo (2011)
  3. Seabaugh, A. C. & Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010) (10.1109/JPROC.2010.2070470) / Proc. IEEE by AC Seabaugh (2010)
  4. Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011) (10.1038/nature10679) / Nature by AM Ionescu (2011)
  5. Radosavljevic, M. et al. Advanced high-k gate dielectric for high-performance short-channel In0.7Ga0.3As quantum well field effect transistors on silicon substrate for low power logic applications. IEDM Tech. Dig. 319–322 (2009) (10.1109/IEDM.2009.5424361)
  6. Kim, S. H. et al. Electron mobility enhancement of extremely thin body In0. 7Ga0. 3As-on-insulator metal-oxide-semiconductor field-effect transistors on Si substrates by metal-oxide-semiconductor interface buffer layer. Appl. Phys. Exp. 5, 014201 (2012) (10.1143/APEX.5.014201) / Appl. Phys. Exp. by SH Kim (2012)
  7. Wu, Y. Q. et al. 0.8-V supply voltage deep-submicrometer inversion-mode In0. 75Ga0. 25As MOSFET. IEEE Elec. Dev. Lett. 30, 700–702 (2009) (10.1109/LED.2009.2022346) / IEEE Elec. Dev. Lett. by YQ Wu (2009)
  8. Radosavljevic, M. et al. Non-planar, multi-gate InGaAs quantum well field effect transistors with high-k gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications. IEDM Tech Dig. 126–129. (2010) (10.1109/IEDM.2010.5703306)
  9. Radosavljevic, M. et al. Electrostatic improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-k gate dielectric and scaled gate-to-drain/gate-to-source separation. IEDM Tech. Dig. 765–768. (2011) (10.1109/IEDM.2011.6131661)
  10. Wieder, H. H. Surface and interface barriers of In x Ga1−x As binary and ternary alloys. J. Vac. Sci. Technol. B 21, 1915–1919 (2003) (10.1116/1.1588646) / J. Vac. Sci. Technol. B by HH Wieder (2003)
  11. Takato, H. et al. Impact of surrounding gate transistor (SGT) for ultra-high-density LSI’s. IEEE Trans. Electron. Dev. 38, 573–578 (1991) (10.1109/16.75168) / IEEE Trans. Electron. Dev. by H Takato (1991)
  12. Gu, J. J. et al. First experimental demonstration of gate-all-around III–V MOSFETs by top-down approach. IEDM Tech. Dig. 769–772. (2011) (10.1109/IEDM.2011.6131662)
  13. Tomioka, K., Yoshimura, M. & Fukui, T. Vertical In0. 7Ga0. 3As nanowire surrounding-gate transistors with high-k gate dielectrics on Si substrate. IEDM Tech. Dig. 773–776. (2011) (10.1109/IEDM.2011.6131663)
  14. Xuan, Y. et al. Submicrometer inversion-type enhancement-mode InGaAs MOSFET with atomic-layer-deposited Al2O3 as gate dielectric. IEEE Elec. Dev. Lett 28, 935–938 (2007) (10.1109/LED.2007.906436) / IEEE Elec. Dev. Lett by Y Xuan (2007)
  15. Ishii, H. et al. High electron mobility metal-insulator-semiconductor field-effect transistors fabricated on (111)-oriented InGaAs channels. Appl. Phys. Exp. 2, 121101 (2009) (10.1143/APEX.2.121101) / Appl. Phys. Exp. by H Ishii (2009)
  16. Kim, D.-H. et al. 50-nm E-mode In0. 7Ga0. 3As PHEMTs on 100-nm InP substrate with f max > 1 THz. IEDM Tech. Dig. 692–695. (2010)
  17. Furukawa, Y. et al. Control of N content of GaPN grown by molecular beam epitaxy and growth of GaPN lattice matched on Si(100) substrate. Jpn. J. Appl. Phys. 41, 528–532 (2002) (10.1143/JJAP.41.528) / Jpn. J. Appl. Phys. by Y Furukawa (2002)
  18. Tomioka, K., Motohisa, J., Hara, S. & Fukui, T. Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475–3480 (2008) (10.1021/nl802398j) / Nano Lett. by K Tomioka (2008)
  19. Tomioka, K. et al. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate. Nanotechnology 20, 145302 (2009) (10.1088/0957-4484/20/14/145302) / Nanotechnology by K Tomioka (2009)
  20. Noborisaka, J. et al. Electrical characterization of InGaAs nanowire-top-gate field-effect transistors by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 46, 7562–7568 (2007) (10.1143/JJAP.46.7562) / Jpn. J. Appl. Phys. by J Noborisaka (2007)
  21. Rehnstedt, C. et al. Vertical InAs nanowire wrap gate transistors on Si substrate. IEEE Trans. Electron. Dev. 55, 3037–3041 (2008) (10.1109/TED.2008.2005179) / IEEE Trans. Electron. Dev. by C Rehnstedt (2008)
  22. Tanaka, T. et al. Vertical surrounding gate transistors using single InAs nanowires grown on Si substrates. Appl. Phys. Exp. 3, 025003 (2010) (10.1143/APEX.3.025003) / Appl. Phys. Exp. by T Tanaka (2010)
  23. Wernersson, L.-E., Thelander, C., Lind, E. & Samuelson, L. III–V nanowires—extending a narrowing road. Proc. IEEE 98, 2047–2060 (2010) (10.1109/JPROC.2010.2065211) / Proc. IEEE by L-E Wernersson (2010)
  24. Ghalamestani, S. G. et al. Uniform and position controlled InAs nanowires on 2′′ Si substrate for transistor applications. Nanotechnology 23, 015302 (2012) (10.1088/0957-4484/23/1/015302) / Nanotechnology by SG Ghalamestani (2012)
  25. Mimura, T., Hiyamizu, S., Fujii, T. & Nanbu, K. A new field-effect transistor with selectively doped GaAs/n-Al x Ga1−x As heterojunctions. Jpn. J. Appl. Phys. 19, L225–L227 (1980) (10.1143/JJAP.19.L225) / Jpn. J. Appl. Phys. by T Mimura (1980)
  26. Tan, I.-H., Snider, G. L., Chang, L. D. & Hu, E. L. A self-consistent solution of Schrodinger-Poisson equations using nonuniform mesh. J. Appl. Phys. 68, 4071–4076 (1990) (10.1063/1.346245) / J. Appl. Phys. by I-H Tan (1990)
  27. Takagi, S., Toriumi, A., Iwase, M. & Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: part I—effects of substrate impurity concentration. IEEE Trans. Electron. Dev. 41, 2357–2362 (1994) (10.1109/16.337449) / IEEE Trans. Electron. Dev. by S Takagi (1994)
  28. ITRS. International Technology Roadmap for Semiconductors http://www.itrs.net/Links/2011ITRS/Home2011.htm (ITRS, 2011)
  29. Galindo, P. L. et al. The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186–1193 (2007) (10.1016/j.ultramic.2007.01.019) / Ultramicroscopy by PL Galindo (2007)
Dates
Type When
Created 13 years ago (Aug. 1, 2012, 5:08 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:02 p.m.)
Indexed 4 days, 4 hours ago (Aug. 23, 2025, 1:08 a.m.)
Issued 13 years ago (Aug. 1, 2012)
Published 13 years ago (Aug. 1, 2012)
Published Online 13 years ago (Aug. 1, 2012)
Published Print 13 years ago (Aug. 1, 2012)
Funders 0

None

@article{Tomioka_2012, title={A III–V nanowire channel on silicon for high-performance vertical transistors}, volume={488}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature11293}, DOI={10.1038/nature11293}, number={7410}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Tomioka, Katsuhiro and Yoshimura, Masatoshi and Fukui, Takashi}, year={2012}, month=aug, pages={189–192} }