Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Lander, G. C., Estrin, E., Matyskiela, M. E., Bashore, C., Nogales, E., & Martin, A. (2012). Complete subunit architecture of the proteasome regulatory particle. Nature, 482(7384), 186–191.

Authors 6
  1. Gabriel C. Lander (first)
  2. Eric Estrin (additional)
  3. Mary E. Matyskiela (additional)
  4. Charlene Bashore (additional)
  5. Eva Nogales (additional)
  6. Andreas Martin (additional)
References 56 Referenced 546
  1. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009) (10.1146/annurev.biochem.78.081507.101607) / Annu. Rev. Biochem. by D Finley (2009)
  2. Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149–3162 (1998) (10.1128/MCB.18.6.3149) / Mol. Cell. Biol. by MH Glickman (1998)
  3. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000) (10.1093/emboj/19.1.94) / EMBO J. by JS Thrower (2000)
  4. Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol. 7, 1062–1067 (2000) (10.1038/80992) / Nature Struct. Biol. by M Groll (2000)
  5. Smith, D. M. et al. Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s α ring opens the gate for substrate entry. Mol. Cell 27, 731–744 (2007) (10.1016/j.molcel.2007.06.033) / Mol. Cell by DM Smith (2007)
  6. Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002) (10.1038/nature01071) / Nature by T Yao (2002)
  7. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002) (10.1126/science.1075898) / Science by R Verma (2002)
  8. Tomko, R. J., Jr, Funakoshi, M., Schneider, K., Wang, J. & Hochstrasser, M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 38, 393–403 (2010) (10.1016/j.molcel.2010.02.035) / Mol. Cell by RJ Tomko Jr (2010)
  9. Rabl, J. et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30, 360–368 (2008) (10.1016/j.molcel.2008.03.004) / Mol. Cell by J Rabl (2008)
  10. Gillette, T. G., Kumar, B., Thompson, D., Slaughter, C. A. & DeMartino, G. N. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 283, 31813–31822 (2008) (10.1074/jbc.M805935200) / J. Biol. Chem. by TG Gillette (2008)
  11. da Fonseca, P. C. & Morris, E. P. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 283, 23305–23314 (2008) (10.1074/jbc.M802716200) / J. Biol. Chem. by PC da Fonseca (2008)
  12. Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nature Cell Biol. 4, 725–730 (2002) (10.1038/ncb845) / Nature Cell Biol. by S Elsasser (2002)
  13. Gomez, T. A., Kolawa, N., Gee, M., Sweredoski, M. J. & Deshaies, R. J. Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. BMC Biol. 9, 33 (2011) (10.1186/1741-7007-9-33) / BMC Biol. by TA Gomez (2011)
  14. Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002) (10.1016/S1097-2765(02)00638-X) / Mol. Cell by DS Leggett (2002)
  15. Bohn, S. et al. Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc. Natl Acad. Sci. USA 107, 20992–20997 (2010) (10.1073/pnas.1015530107) / Proc. Natl Acad. Sci. USA by S Bohn (2010)
  16. Nickell, S. et al. Insights into the molecular architecture of the 26S proteasome. Proc. Natl Acad. Sci. USA 106, 11943–11947 (2009) (10.1073/pnas.0905081106) / Proc. Natl Acad. Sci. USA by S Nickell (2009)
  17. Förster, F. et al. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem. Biophys. Res. Commun. 388, 228–233 (2009) (10.1016/j.bbrc.2009.07.145) / Biochem. Biophys. Res. Commun. by F Förster (2009)
  18. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009) (10.1016/j.cell.2009.01.041) / Cell by P Xu (2009)
  19. Inobe, T., Fishbain, S., Prakash, S. & Matouschek, A. Defining the geometry of the two-component proteasome degron. Nature Chem. Biol. 7, 161–167 (2011) (10.1038/nchembio.521) / Nature Chem. Biol. by T Inobe (2011)
  20. Tian, G. et al. An asymmetric interface between the regulatory and core particles of the proteasome. Nature Struct. Mol. Biol. 18, 1259–1267 (2011) (10.1038/nsmb.2147) / Nature Struct. Mol. Biol. by G Tian (2011)
  21. Effantin, G., Rosenzweig, R., Glickman, M. H. & Steven, A. C. Electron microscopic evidence in support of α-solenoid models of proteasomal subunits Rpn1 and Rpn2. J. Mol. Biol. 386, 1204–1211 (2009) (10.1016/j.jmb.2009.01.039) / J. Mol. Biol. by G Effantin (2009)
  22. Zhang, F. et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34, 473–484 (2009) (10.1016/j.molcel.2009.04.021) / Mol. Cell by F Zhang (2009)
  23. Hamazaki, J. et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 25, 4524–4536 (2006) (10.1038/sj.emboj.7601338) / EMBO J. by J Hamazaki (2006)
  24. Schreiner, P. et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453, 548–552 (2008) (10.1038/nature06924) / Nature by P Schreiner (2008)
  25. Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998) (10.1016/S0092-8674(00)81603-7) / Cell by MH Glickman (1998)
  26. Verma, R., Oania, R., Graumann, J. & Deshaies, R. J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004) (10.1016/j.cell.2004.06.014) / Cell by R Verma (2004)
  27. Glynn, S. E., Martin, A., Nager, A. R., Baker, T. A. & Sauer, R. T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009) (10.1016/j.cell.2009.09.034) / Cell by SE Glynn (2009)
  28. Maillard, R. A. et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 145, 459–469 (2011) (10.1016/j.cell.2011.04.010) / Cell by RA Maillard (2011)
  29. Aubin-Tam, M. E., Olivares, A. O., Sauer, R. T., Baker, T. A. & Lang, M. J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145, 257–267 (2011) (10.1016/j.cell.2011.03.036) / Cell by ME Aubin-Tam (2011)
  30. Martin, A., Baker, T. A. & Sauer, R. T. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature 437, 1115–1120 (2005) (10.1038/nature04031) / Nature by A Martin (2005)
  31. Hersch, G. L., Burton, R. E., Bolon, D. N., Baker, T. A. & Sauer, R. T. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 121, 1017–1027 (2005) (10.1016/j.cell.2005.05.024) / Cell by GL Hersch (2005)
  32. Thomsen, N. D. & Berger, J. M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139, 523–534 (2009) (10.1016/j.cell.2009.08.043) / Cell by ND Thomsen (2009)
  33. Enemark, E. J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–275 (2006) (10.1038/nature04943) / Nature by EJ Enemark (2006)
  34. Riedinger, C. et al. Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12. J. Biol. Chem. 285, 33992–34003 (2010) (10.1074/jbc.M110.134510) / J. Biol. Chem. by C Riedinger (2010)
  35. Eddins, M. J., Varadan, R., Fushman, D., Pickart, C. M. & Wolberger, C. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J. Mol. Biol. 367, 204–211 (2007) (10.1016/j.jmb.2006.12.065) / J. Mol. Biol. by MJ Eddins (2007)
  36. Cook, W. J., Jeffrey, L. C., Carson, M., Chen, Z. & Pickart, C. M. Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J. Biol. Chem. 267, 16467–16471 (1992) (10.1016/S0021-9258(18)42026-1) / J. Biol. Chem. by WJ Cook (1992)
  37. Bremm, A., Freund, S. M. & Komander, D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nature Struct. Mol. Biol. 17, 939–947 (2010) (10.1038/nsmb.1873) / Nature Struct. Mol. Biol. by A Bremm (2010)
  38. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008) (10.1038/nature06926) / Nature by K Husnjak (2008)
  39. Hanna, J. et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127, 99–111 (2006) (10.1016/j.cell.2006.07.038) / Cell by J Hanna (2006)
  40. Prakash, S., Tian, L., Ratliff, K. S., Lehotzky, R. E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nature Struct. Mol. Biol. 11, 830–837 (2004) (10.1038/nsmb814) / Nature Struct. Mol. Biol. by S Prakash (2004)
  41. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000) (10.1091/mbc.11.10.3425) / Mol. Biol. Cell by R Verma (2000)
  42. Leggett, D. S., Glickman, M. H. & Finley, D. Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol. Biol. 301, 57–70 (2005) / Methods Mol. Biol. by DS Leggett (2005)
  43. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005) (10.1016/j.jsb.2005.03.010) / J. Struct. Biol. by C Suloway (2005)
  44. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009) (10.1016/j.jsb.2009.01.002) / J. Struct. Biol. by GC Lander (2009)
  45. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007) (10.1016/j.jsb.2006.05.009) / J. Struct. Biol. by G Tang (2007)
  46. Hohn, M. et al. SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007) (10.1016/j.jsb.2006.07.003) / J. Struct. Biol. by M Hohn (2007)
  47. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007) (10.1016/j.jsb.2006.06.010) / J. Struct. Biol. by TD Goddard (2007)
  48. Sone, T., Saeki, Y., Toh-e, A. & Yokosawa, H. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J. Biol. Chem. 279, 28807–28816 (2004) (10.1074/jbc.M403165200) / J. Biol. Chem. by T Sone (2004)
  49. Kim, H. C. & Huibregtse, J. M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29, 3307–3318 (2009) (10.1128/MCB.00240-09) / Mol. Cell. Biol. by HC Kim (2009)
  50. Mallick, S. P., Carragher, B., Potter, C. S. & Kriegman, D. J. ACE: automated CTF estimation. Ultramicroscopy 104, 8–29 (2005) (10.1016/j.ultramic.2005.02.004) / Ultramicroscopy by SP Mallick (2005)
  51. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003) (10.1016/S1047-8477(03)00069-8) / J. Struct. Biol. by JA Mindell (2003)
  52. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009) (10.1016/j.jsb.2009.01.004) / J. Struct. Biol. by NR Voss (2009)
  53. Sorzano, C. O. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004) (10.1016/j.jsb.2004.06.006) / J. Struct. Biol. by CO Sorzano (2004)
  54. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996) (10.1006/jsbi.1996.0004) / J. Struct. Biol. by M van Heel (1996)
  55. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996) (10.1006/jsbi.1996.0030) / J. Struct. Biol. by J Frank (1996)
  56. Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007) (10.1016/j.jsb.2006.06.006) / J. Struct. Biol. by JB Heymann (2007)
Dates
Type When
Created 13 years, 7 months ago (Jan. 10, 2012, 8:17 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 1:57 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 9:26 a.m.)
Issued 13 years, 7 months ago (Jan. 11, 2012)
Published 13 years, 7 months ago (Jan. 11, 2012)
Published Online 13 years, 7 months ago (Jan. 11, 2012)
Published Print 13 years, 6 months ago (Feb. 1, 2012)
Funders 0

None

@article{Lander_2012, title={Complete subunit architecture of the proteasome regulatory particle}, volume={482}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature10774}, DOI={10.1038/nature10774}, number={7384}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Lander, Gabriel C. and Estrin, Eric and Matyskiela, Mary E. and Bashore, Charlene and Nogales, Eva and Martin, Andreas}, year={2012}, month=jan, pages={186–191} }