Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
55
Referenced
774
-
Barlow, H. B., Hill, R. M. & Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964)
(
10.1113/jphysiol.1964.sp007463
) / J. Physiol. (Lond.) by HB Barlow (1964) -
Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol. (Lond.) 178, 477–504 (1965)
(
10.1113/jphysiol.1965.sp007638
) / J. Physiol. (Lond.) by HB Barlow (1965) -
Taylor, W. R. & Vaney, D. I. Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. J. Neurosci. 22, 7712–7720 (2002)
(
10.1523/JNEUROSCI.22-17-07712.2002
) / J. Neurosci. by WR Taylor (2002) -
Fried, S. I., Munch, T. A. & Werblin, F. S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002)
(
10.1038/nature01179
) / Nature by SI Fried (2002) -
Famiglietti, E. V. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J. Comp. Neurol. 309, 40–70 (1991)
(
10.1002/cne.903090105
) / J. Comp. Neurol. by EV Famiglietti (1991) -
Tauchi, M. & Masland, R. H. The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc. R. Soc. Lond. B 223, 101–119 (1984)
(
10.1098/rspb.1984.0085
) / Proc. R. Soc. Lond. B by M Tauchi (1984) -
Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780 (2001)
(
10.1016/S0896-6273(01)00316-6
) / Neuron by K Yoshida (2001) -
O’Malley, D. M., Sandell, J. H. & Masland, R. H. Co-release of acetylcholine and GABA by the starburst amacrine cells. J. Neurosci. 12, 1394–1408 (1992)
(
10.1523/JNEUROSCI.12-04-01394.1992
) / J. Neurosci. by DM O’Malley (1992) -
Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002)
(
10.1038/nature00931
) / Nature by T Euler (2002) -
Chiao, C. C. & Masland, R. H. Starburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells. J. Neurosci. 22, 10509–10513 (2002)
(
10.1523/JNEUROSCI.22-24-10509.2002
) / J. Neurosci. by CC Chiao (2002) -
Grzywacz, N. M., Tootle, J. S. & Amthor, F. R. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit’s retinal directional selectivity? Vis. Neurosci. 14, 39–54 (1997)
(
10.1017/S0952523800008749
) / Vis. Neurosci. by NM Grzywacz (1997) -
Taylor, W. R. & Vaney, D. I. New directions in retinal research. Trends Neurosci. 26, 379–385 (2003)
(
10.1016/S0166-2236(03)00167-X
) / Trends Neurosci. by WR Taylor (2003) -
Demb, J. B. Cellular mechanisms for direction selectivity in the retina. Neuron 55, 179–186 (2007)
(
10.1016/j.neuron.2007.07.001
) / Neuron by JB Demb (2007) -
Schachter, M. J. et al. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLOS Comput. Biol. 6, (2010)
(
10.1371/journal.pcbi.1000899
) -
Borg-Graham, L. J. The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nature Neurosci. 4, 176–183 (2001)
(
10.1038/84007
) / Nature Neurosci. by LJ Borg-Graham (2001) -
Wei, W., Hamby, A. M., Zhou, K. & Feller, M. B. Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469, 402–406 (2010)
(
10.1038/nature09600
) / Nature by W Wei (2010) -
Lee, S., Kim, K. & Zhou, Z. J. Role of ACh-GABA co-transmission in detecting image motion and motion direction. Neuron 68, 1159–1172 (2010)
(
10.1016/j.neuron.2010.11.031
) / Neuron by S Lee (2010) -
Yonehara, K. et al. Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469, 407–410 (2010)
(
10.1038/nature09711
) / Nature by K Yonehara (2010) -
Mumm, J. S. et al. Laminar circuit formation in the vertebrate retina. Prog. Brain Res. 147, 155–169 (2005)
(
10.1016/S0079-6123(04)47012-5
) / Prog. Brain Res. by JS Mumm (2005) -
Famiglietti, E. V. A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells. Vis. Neurosci. 19, 145–162 (2002)
(
10.1017/S0952523802191139
) / Vis. Neurosci. by EV Famiglietti (2002) -
Dong, W. et al. Dendritic relationship between starburst amacrine cells and direction-selective ganglion cells in the rabbit retina. J. Physiol. (Lond.) 556, 11–17 (2004)
(
10.1113/jphysiol.2004.060715
) / J. Physiol. (Lond.) by W Dong (2004) -
Chen, Y. C. & Chiao, C. C. Symmetric synaptic patterns between starburst amacrine cells and direction selective ganglion cells in the rabbit retina. J. Comp. Neurol. 508, 175–183 (2008)
(
10.1002/cne.21677
) / J. Comp. Neurol. by YC Chen (2008) -
Dacheux, R. F., Chimento, M. F. & Amthor, F. R. Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina. J. Comp. Neurol. 456, 267–278 (2003)
(
10.1002/cne.10521
) / J. Comp. Neurol. by RF Dacheux (2003) -
White, J. G. et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. 314, 1–340 (1986)
(
10.1098/rstb.1986.0056
) / Phil. Trans. R. Soc. Lond. by JG White (1986) -
Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004)
(
10.1371/journal.pbio.0020329
) / PLoS Biol. by W Denk (2004) -
Oyster, C. W., Amthor, F. R. & Takahashi, E. S. Dendritic architecture of ON-OFF direction-selective ganglion cells in the rabbit retina. Vision Res. 33, 579–608 (1993)
(
10.1016/0042-6989(93)90181-U
) / Vision Res. by CW Oyster (1993) -
Yang, G. & Masland, R. H. Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J. Neurosci. 14, 5267–5280 (1994)
(
10.1523/JNEUROSCI.14-09-05267.1994
) / J. Neurosci. by G Yang (1994) -
Denk, W. & Detwiler, P. B. Optical recording of light-evoked calcium signals in the functionally intact retina. Proc. Natl Acad. Sci. USA 96, 7035–7040 (1999)
(
10.1073/pnas.96.12.7035
) / Proc. Natl Acad. Sci. USA by W Denk (1999) -
Blankenship, A. G. et al. Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 62, 230–241 (2009)
(
10.1016/j.neuron.2009.03.015
) / Neuron by AG Blankenship (2009) -
Stosiek, C. et al. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)
(
10.1073/pnas.1232232100
) / Proc. Natl Acad. Sci. USA by C Stosiek (2003) -
Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)
(
10.1126/science.2321027
) / Science by W Denk (1990) -
Euler, T. et al. Eyecup scope–optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch. 457, 1393–1414 (2009)
(
10.1007/s00424-008-0603-5
) / Pflugers Arch. by T Euler (2009) -
Oyster, C. W. & Barlow, H. B. Direction-selective units in rabbit retina: distribution of preferred directions. Science 155, 841–842 (1967)
(
10.1126/science.155.3764.841
) / Science by CW Oyster (1967) -
Yamada, E. S. et al. Synaptic connections of starburst amacrine cells and localization of acetylcholine receptors in primate retinas. J. Comp. Neurol. 461, 76–90 (2003)
(
10.1002/cne.10672
) / J. Comp. Neurol. by ES Yamada (2003) -
Keeley, P. W. et al. Dendritic spread and functional coverage of starburst amacrine cells. J. Comp. Neurol. 505, 539–546 (2007)
(
10.1002/cne.21518
) / J. Comp. Neurol. by PW Keeley (2007) -
Hausselt, S. E. et al. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol. 5, e185 (2007)
(
10.1371/journal.pbio.0050185
) / PLoS Biol. by SE Hausselt (2007) -
Lee, S. & Zhou, Z. J. The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51, 787–799 (2006)
(
10.1016/j.neuron.2006.08.007
) / Neuron by S Lee (2006) -
Oesch, N. W. & Taylor, W. R. Tetrodotoxin-resistant sodium channels contribute to directional responses in starburst amacrine cells. PLoS ONE 5, e12447 (2010)
(
10.1371/journal.pone.0012447
) / PLoS ONE by NW Oesch (2010) -
He, S., Jin, Z. F. & Masland, R. H. The nondiscriminating zone of directionally selective retinal ganglion cells: comparison with dendritic structure and implications for mechanism. J. Neurosci. 19, 8049–8056 (1999)
(
10.1523/JNEUROSCI.19-18-08049.1999
) / J. Neurosci. by S He (1999) -
Kittila, C. A. & Massey, S. C. Effect of ON pathway blockade on directional selectivity in the rabbit retina. J. Neurophysiol. 73, 703–712 (1995)
(
10.1152/jn.1995.73.2.703
) / J. Neurophysiol. by CA Kittila (1995) -
Caldwell, J. H., Daw, N. W. & Wyatt, H. J. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J. Physiol. (Lond.) 276, 277–298 (1978)
(
10.1113/jphysiol.1978.sp012233
) / J. Physiol. (Lond.) by JH Caldwell (1978) -
Vaney, D. I. & Young, H. M. GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Res. 438, 369–373 (1988)
(
10.1016/0006-8993(88)91366-2
) / Brain Res. by DI Vaney (1988) -
Fried, S. I., Munch, T. A. & Werblin, F. S. Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina. Neuron 46, 117–127 (2005)
(
10.1016/j.neuron.2005.02.007
) / Neuron by SI Fried (2005) -
Dmitrieva, N. A. et al. Identification of cholinoceptive glycinergic neurons in the mammalian retina. J. Comp. Neurol. 456, 167–175 (2003)
(
10.1002/cne.10520
) / J. Comp. Neurol. by NA Dmitrieva (2003) -
Dmitrieva, N. A., Strang, C. E. & Keyser, K. T. Expression of α7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. J. Histochem. Cytochem. 55, 461–476 (2007)
(
10.1369/jhc.6A7116.2006
) / J. Histochem. Cytochem. by NA Dmitrieva (2007) -
Wickersham, I. R. et al. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007)
(
10.1038/nmeth999
) / Nature Methods by IR Wickersham (2007) -
Granstedt, A. E. et al. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus. PLoS ONE 4, e6923 (2009)
(
10.1371/journal.pone.0006923
) / PLoS ONE by AE Granstedt (2009) - Briggman, K. L. & Euler, T. Bulk electroporation and population calcium imaging in the adult mammalian retina. J. Neurophysiol (in the press)
-
Schlichtenbrede, F. C. et al. Toxicity assessment of intravitreal triamcinolone and bevacizumab in a retinal explant mouse model using two-photon microscopy. Invest. Ophthalmol. Vis. Sci. 50, 5880–5887 (2009)
(
10.1167/iovs.08-3078
) / Invest. Ophthalmol. Vis. Sci. by FC Schlichtenbrede (2009) - Fahmy, A. An Extemporaneous Lead Citrate Stain for Electron Microscopy 148–149 (Proc. 25th Annu. EMSA Meeting, 1967) / An Extemporaneous Lead Citrate Stain for Electron Microscopy by A Fahmy (1967)
- Glauert, A. M. & Lewis, P. R. Biological specimen preparation for transmission electron microscopy. In Practical Methods in Electron Microscopy xxi (Princeton Univ. Press, 1998) / Practical Methods in Electron Microscopy by AM Glauert (1998)
- Karnovsky, M. J. Use of Ferrocyanide-reduced osmium in electron microscopy 146 (Proc. 14th Annual Meeting Am. Soc. Cell Biol., 1971) / Use of Ferrocyanide-reduced osmium in electron microscopy by MJ Karnovsky (1971)
-
Seligman, A. M., Wasserkrug, H. L. & Hanker, J. S. A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J. Cell Biol. 30, 424–432 (1966)
(
10.1083/jcb.30.2.424
) / J. Cell Biol. by AM Seligman (1966) -
Walton, J. Lead asparate, an en bloc contrast stain particularly useful for ultrastructural enzymology. J. Histochem. Cytochem. 27, 1337–1342 (1979)
(
10.1177/27.10.512319
) / J. Histochem. Cytochem. by J Walton (1979) -
Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006)
(
10.1016/j.neuroimage.2006.01.015
) / Neuroimage by PA Yushkevich (2006)
Dates
Type | When |
---|---|
Created | 14 years, 5 months ago (March 8, 2011, 9:57 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 1:50 p.m.) |
Indexed | 14 minutes ago (Aug. 28, 2025, 2:21 p.m.) |
Issued | 14 years, 5 months ago (March 1, 2011) |
Published | 14 years, 5 months ago (March 1, 2011) |
Published Online | 14 years, 5 months ago (March 9, 2011) |
Published Print | 14 years, 5 months ago (March 1, 2011) |
@article{Briggman_2011, title={Wiring specificity in the direction-selectivity circuit of the retina}, volume={471}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature09818}, DOI={10.1038/nature09818}, number={7337}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Briggman, Kevin L. and Helmstaedter, Moritz and Denk, Winfried}, year={2011}, month=mar, pages={183–188} }