Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
57
Referenced
296
-
Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006)
(
10.1016/j.cell.2006.09.039
) / Cell by IM Cheeseman (2006) -
Wei, R. R., Al-Bassam, J. & Harrison, S. C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nature Struct. Mol. Biol. 14, 54–59 (2007)
(
10.1038/nsmb1186
) / Nature Struct. Mol. Biol. by RR Wei (2007) -
DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006)
(
10.1016/j.cell.2006.09.047
) / Cell by JG DeLuca (2006) -
Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297, 2267–2270 (2002)
(
10.1126/science.1075596
) / Science by S Martin-Lluesma (2002) -
DeLuca, J. G. et al. Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr. Biol. 13, 2103–2109 (2003)
(
10.1016/j.cub.2003.10.056
) / Curr. Biol. by JG DeLuca (2003) -
Kemmler, S. et al. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J. 28, 1099–1110 (2009)
(
10.1038/emboj.2009.62
) / EMBO J. by S Kemmler (2009) -
Chen, Y., Riley, D. J., Chen, P. L. & Lee, W. H. HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol. Cell. Biol. 17, 6049–6056 (1997)
(
10.1128/MCB.17.10.6049
) / Mol. Cell. Biol. by Y Chen (1997) -
Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967–977 (1998)
(
10.1083/jcb.141.4.967
) / J. Cell Biol. by PA Wigge (1998) -
Wei, R. R., Sorger, P. K. & Harrison, S. C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl Acad. Sci. USA 102, 5363–5367 (2005)
(
10.1073/pnas.0501168102
) / Proc. Natl Acad. Sci. USA by RR Wei (2005) -
Ciferri, C. et al. Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J. Biol. Chem. 280, 29088–29095 (2005)
(
10.1074/jbc.M504070200
) / J. Biol. Chem. by C Ciferri (2005) -
Wei, R. R. et al. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 14, 1003–1009 (2006)
(
10.1016/j.str.2006.04.007
) / Structure by RR Wei (2006) -
Ciferri, C. et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008)
(
10.1016/j.cell.2008.03.020
) / Cell by C Ciferri (2008) -
Wang, H. W. et al. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J. Mol. Biol. 383, 894–903 (2008)
(
10.1016/j.jmb.2008.08.077
) / J. Mol. Biol. by HW Wang (2008) -
Hayashi, I., Wilde, A., Mal, T. K. & Ikura, M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol. Cell 19, 449–460 (2005)
(
10.1016/j.molcel.2005.06.034
) / Mol. Cell by I Hayashi (2005) -
Slep, K. C. & Vale, R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol. Cell 27, 976–991 (2007)
(
10.1016/j.molcel.2007.07.023
) / Mol. Cell by KC Slep (2007) -
Guimaraes, G. J., Dong, Y., McEwen, B. F. & Deluca, J. G. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr. Biol. 18, 1778–1784 (2008)
(
10.1016/j.cub.2008.08.012
) / Curr. Biol. by GJ Guimaraes (2008) -
Miller, S. A., Johnson, M. L. & Stukenberg, P. T. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr. Biol. 18, 1785–1791 (2008)
(
10.1016/j.cub.2008.11.007
) / Curr. Biol. by SA Miller (2008) -
Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002)
(
10.1016/S0092-8674(02)00973-X
) / Cell by IM Cheeseman (2002) -
Ramey, V. H., Wang, H. W. & Nogales, E. Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries. J. Struct. Biol. 167, 97–105 (2009)
(
10.1016/j.jsb.2009.05.002
) / J. Struct. Biol. by VH Ramey (2009) -
Egelman, E. H. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J. Struct. Biol. 157, 83–94 (2007)
(
10.1016/j.jsb.2006.05.015
) / J. Struct. Biol. by EH Egelman (2007) -
Wilson-Kubalek, E. M., Cheeseman, I. M., Yoshioka, C., Desai, A. & Milligan, R. A. Orientation and structure of the Ndc80 complex on the microtubule lattice. J. Cell Biol. 182, 1055–1061 (2008)
(
10.1083/jcb.200804170
) / J. Cell Biol. by EM Wilson-Kubalek (2008) -
Mizuno, N., Narita, A., Kon, T., Sutoh, K. & Kikkawa, M. Three-dimensional structure of cytoplasmic dynein bound to microtubules. Proc. Natl Acad. Sci. USA 104, 20832–20837 (2007)
(
10.1073/pnas.0710406105
) / Proc. Natl Acad. Sci. USA by N Mizuno (2007) -
Hoenger, A. & Gross, H. Structural investigations into microtubule-MAP complexes. Methods Cell Biol. 84, 425–444 (2008)
(
10.1016/S0091-679X(07)84014-3
) / Methods Cell Biol. by A Hoenger (2008) -
des Georges, A. et al. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nature Struct. Mol. Biol. 15, 1102–1108 (2008)
(
10.1038/nsmb.1482
) / Nature Struct. Mol. Biol. by A des Georges (2008) -
Löwe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of alpha beta-tubulin at 3.5 A resolution. J. Mol. Biol. 313, 1045–1057 (2001)
(
10.1006/jmbi.2001.5077
) / J. Mol. Biol. by J Löwe (2001) -
Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005)
(
10.1038/nature03606
) / Nature by HW Wang (2005) -
Wilson, L., Jordan, M. A., Morse, A. & Margolis, R. L. Interaction of vinblastine with steady-state microtubules in vitro . J. Mol. Biol. 159, 125–149 (1982)
(
10.1016/0022-2836(82)90035-3
) / J. Mol. Biol. by L Wilson (1982) -
Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore-microtubule attachment site. Nature Cell Biol. 8, 581–585 (2006)
(
10.1038/ncb1414
) / Nature Cell Biol. by AP Joglekar (2006) -
Joglekar, A. P. et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 181, 587–594 (2008)
(
10.1083/jcb.200803027
) / J. Cell Biol. by AP Joglekar (2008) -
Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009)
(
10.1126/science.1167000
) / Science by D Liu (2009) -
Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002)
(
10.1016/S0092-8674(02)00633-5
) / Cell by TU Tanaka (2002) -
Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004)
(
10.1016/S1534-5807(04)00025-5
) / Dev. Cell by PD Andrews (2004) -
Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009)
(
10.1038/emboj.2009.173
) / EMBO J. by S Santaguida (2009) -
Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184, 373–381 (2009)
(
10.1083/jcb.200808130
) / J. Cell Biol. by TJ Maresca (2009) -
Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684 (2009)
(
10.1016/j.cell.2009.03.035
) / Cell by X Wan (2009) -
Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809–820 (2010)
(
10.1083/jcb.201001006
) / J. Cell Biol. by D Liu (2010) -
Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985)
(
10.1073/pnas.82.13.4404
) / Proc. Natl Acad. Sci. USA by TL Hill (1985) -
Powers, A. F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009)
(
10.1016/j.cell.2008.12.045
) / Cell by AF Powers (2009) -
Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol. 9, 516–522 (2007)
(
10.1038/ncb1576
) / Nature Cell Biol. by Y Dong (2007) -
Lombillo, V. A., Stewart, R. J. & McIntosh, J. R. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373, 161–164 (1995)
(
10.1038/373161a0
) / Nature by VA Lombillo (1995) -
McIntosh, J. R. et al. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135, 322–333 (2008)
(
10.1016/j.cell.2008.08.038
) / Cell by JR McIntosh (2008) -
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)
(
10.1006/jsbi.1996.0030
) / J. Struct. Biol. by J Frank (1996) -
Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003)
(
10.1016/S1047-8477(03)00069-8
) / J. Struct. Biol. by JA Mindell (2003) -
Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)
(
10.1006/jsbi.1999.4174
) / J. Struct. Biol. by SJ Ludtke (1999) -
Wade, R. H., Chretien, D. & Job, D. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J. Mol. Biol. 212, 775–786 (1990)
(
10.1016/0022-2836(90)90236-F
) / J. Mol. Biol. by RH Wade (1990) -
Arnal, I. & Wade, R. H. How does taxol stabilize microtubules? Curr. Biol. 5, 900–908 (1995)
(
10.1016/S0960-9822(95)00180-1
) / Curr. Biol. by I Arnal (1995) -
Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007)
(
10.1016/j.jsb.2006.05.004
) / J. Struct. Biol. by N Grigorieff (2007) -
Sachse, C. et al. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J. Mol. Biol. 371, 812–835 (2007)
(
10.1016/j.jmb.2007.05.088
) / J. Mol. Biol. by C Sachse (2007) -
Stewart, A. & Grigorieff, N. Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102, 67–84 (2004)
(
10.1016/j.ultramic.2004.08.008
) / Ultramicroscopy by A Stewart (2004) -
Chen, J. Z. et al. Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc. Natl Acad. Sci. USA 106, 10644–10648 (2009)
(
10.1073/pnas.0904024106
) / Proc. Natl Acad. Sci. USA by JZ Chen (2009) -
Goddard, T. D., Huang, C. C. & Ferrin, T. E. Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. Structure 13, 473–482 (2005)
(
10.1016/j.str.2005.01.006
) / Structure by TD Goddard (2005) - Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image Processing with ImageJ. Biophotonics International 11, 36–42 (2004) / Biophotonics International by MD Abramoff (2004)
-
Amat, F. et al. Markov random field based automatic image alignment for electron tomography. J. Struct. Biol. 161, 260–275 (2008)
(
10.1016/j.jsb.2007.07.007
) / J. Struct. Biol. by F Amat (2008) -
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996)
(
10.1006/jsbi.1996.0013
) / J. Struct. Biol. by JR Kremer (1996) - Welch, B. L. The generalisation of student's problems when several different population variances are involved. Biometrika 34, 28–35 (1947) / Biometrika by BL Welch (1947)
-
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)
(
10.1093/bioinformatics/btm404
) / Bioinformatics by MA Larkin (2007) -
Landau, M. et al. Consurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–302 (2005)
(
10.1093/nar/gki370
) / Nucleic Acids Res. by M Landau (2005)
Dates
Type | When |
---|---|
Created | 14 years, 10 months ago (Oct. 11, 2010, 10:28 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 1:46 p.m.) |
Indexed | 3 weeks ago (Aug. 2, 2025, 12:40 a.m.) |
Issued | 14 years, 10 months ago (Oct. 1, 2010) |
Published | 14 years, 10 months ago (Oct. 1, 2010) |
Published Online | 14 years, 10 months ago (Oct. 13, 2010) |
Published Print | 14 years, 10 months ago (Oct. 1, 2010) |
@article{Alushin_2010, title={The Ndc80 kinetochore complex forms oligomeric arrays along microtubules}, volume={467}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature09423}, DOI={10.1038/nature09423}, number={7317}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Alushin, Gregory M. and Ramey, Vincent H. and Pasqualato, Sebastiano and Ball, David A. and Grigorieff, Nikolaus and Musacchio, Andrea and Nogales, Eva}, year={2010}, month=oct, pages={805–810} }