Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Alushin, G. M., Ramey, V. H., Pasqualato, S., Ball, D. A., Grigorieff, N., Musacchio, A., & Nogales, E. (2010). The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature, 467(7317), 805–810.

Authors 7
  1. Gregory M. Alushin (first)
  2. Vincent H. Ramey (additional)
  3. Sebastiano Pasqualato (additional)
  4. David A. Ball (additional)
  5. Nikolaus Grigorieff (additional)
  6. Andrea Musacchio (additional)
  7. Eva Nogales (additional)
References 57 Referenced 296
  1. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006) (10.1016/j.cell.2006.09.039) / Cell by IM Cheeseman (2006)
  2. Wei, R. R., Al-Bassam, J. & Harrison, S. C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nature Struct. Mol. Biol. 14, 54–59 (2007) (10.1038/nsmb1186) / Nature Struct. Mol. Biol. by RR Wei (2007)
  3. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006) (10.1016/j.cell.2006.09.047) / Cell by JG DeLuca (2006)
  4. Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297, 2267–2270 (2002) (10.1126/science.1075596) / Science by S Martin-Lluesma (2002)
  5. DeLuca, J. G. et al. Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr. Biol. 13, 2103–2109 (2003) (10.1016/j.cub.2003.10.056) / Curr. Biol. by JG DeLuca (2003)
  6. Kemmler, S. et al. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J. 28, 1099–1110 (2009) (10.1038/emboj.2009.62) / EMBO J. by S Kemmler (2009)
  7. Chen, Y., Riley, D. J., Chen, P. L. & Lee, W. H. HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol. Cell. Biol. 17, 6049–6056 (1997) (10.1128/MCB.17.10.6049) / Mol. Cell. Biol. by Y Chen (1997)
  8. Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967–977 (1998) (10.1083/jcb.141.4.967) / J. Cell Biol. by PA Wigge (1998)
  9. Wei, R. R., Sorger, P. K. & Harrison, S. C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl Acad. Sci. USA 102, 5363–5367 (2005) (10.1073/pnas.0501168102) / Proc. Natl Acad. Sci. USA by RR Wei (2005)
  10. Ciferri, C. et al. Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J. Biol. Chem. 280, 29088–29095 (2005) (10.1074/jbc.M504070200) / J. Biol. Chem. by C Ciferri (2005)
  11. Wei, R. R. et al. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 14, 1003–1009 (2006) (10.1016/j.str.2006.04.007) / Structure by RR Wei (2006)
  12. Ciferri, C. et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008) (10.1016/j.cell.2008.03.020) / Cell by C Ciferri (2008)
  13. Wang, H. W. et al. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J. Mol. Biol. 383, 894–903 (2008) (10.1016/j.jmb.2008.08.077) / J. Mol. Biol. by HW Wang (2008)
  14. Hayashi, I., Wilde, A., Mal, T. K. & Ikura, M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol. Cell 19, 449–460 (2005) (10.1016/j.molcel.2005.06.034) / Mol. Cell by I Hayashi (2005)
  15. Slep, K. C. & Vale, R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol. Cell 27, 976–991 (2007) (10.1016/j.molcel.2007.07.023) / Mol. Cell by KC Slep (2007)
  16. Guimaraes, G. J., Dong, Y., McEwen, B. F. & Deluca, J. G. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr. Biol. 18, 1778–1784 (2008) (10.1016/j.cub.2008.08.012) / Curr. Biol. by GJ Guimaraes (2008)
  17. Miller, S. A., Johnson, M. L. & Stukenberg, P. T. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr. Biol. 18, 1785–1791 (2008) (10.1016/j.cub.2008.11.007) / Curr. Biol. by SA Miller (2008)
  18. Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002) (10.1016/S0092-8674(02)00973-X) / Cell by IM Cheeseman (2002)
  19. Ramey, V. H., Wang, H. W. & Nogales, E. Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries. J. Struct. Biol. 167, 97–105 (2009) (10.1016/j.jsb.2009.05.002) / J. Struct. Biol. by VH Ramey (2009)
  20. Egelman, E. H. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J. Struct. Biol. 157, 83–94 (2007) (10.1016/j.jsb.2006.05.015) / J. Struct. Biol. by EH Egelman (2007)
  21. Wilson-Kubalek, E. M., Cheeseman, I. M., Yoshioka, C., Desai, A. & Milligan, R. A. Orientation and structure of the Ndc80 complex on the microtubule lattice. J. Cell Biol. 182, 1055–1061 (2008) (10.1083/jcb.200804170) / J. Cell Biol. by EM Wilson-Kubalek (2008)
  22. Mizuno, N., Narita, A., Kon, T., Sutoh, K. & Kikkawa, M. Three-dimensional structure of cytoplasmic dynein bound to microtubules. Proc. Natl Acad. Sci. USA 104, 20832–20837 (2007) (10.1073/pnas.0710406105) / Proc. Natl Acad. Sci. USA by N Mizuno (2007)
  23. Hoenger, A. & Gross, H. Structural investigations into microtubule-MAP complexes. Methods Cell Biol. 84, 425–444 (2008) (10.1016/S0091-679X(07)84014-3) / Methods Cell Biol. by A Hoenger (2008)
  24. des Georges, A. et al. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nature Struct. Mol. Biol. 15, 1102–1108 (2008) (10.1038/nsmb.1482) / Nature Struct. Mol. Biol. by A des Georges (2008)
  25. Löwe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of alpha beta-tubulin at 3.5 A resolution. J. Mol. Biol. 313, 1045–1057 (2001) (10.1006/jmbi.2001.5077) / J. Mol. Biol. by J Löwe (2001)
  26. Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005) (10.1038/nature03606) / Nature by HW Wang (2005)
  27. Wilson, L., Jordan, M. A., Morse, A. & Margolis, R. L. Interaction of vinblastine with steady-state microtubules in vitro . J. Mol. Biol. 159, 125–149 (1982) (10.1016/0022-2836(82)90035-3) / J. Mol. Biol. by L Wilson (1982)
  28. Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore-microtubule attachment site. Nature Cell Biol. 8, 581–585 (2006) (10.1038/ncb1414) / Nature Cell Biol. by AP Joglekar (2006)
  29. Joglekar, A. P. et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 181, 587–594 (2008) (10.1083/jcb.200803027) / J. Cell Biol. by AP Joglekar (2008)
  30. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009) (10.1126/science.1167000) / Science by D Liu (2009)
  31. Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002) (10.1016/S0092-8674(02)00633-5) / Cell by TU Tanaka (2002)
  32. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004) (10.1016/S1534-5807(04)00025-5) / Dev. Cell by PD Andrews (2004)
  33. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009) (10.1038/emboj.2009.173) / EMBO J. by S Santaguida (2009)
  34. Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184, 373–381 (2009) (10.1083/jcb.200808130) / J. Cell Biol. by TJ Maresca (2009)
  35. Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684 (2009) (10.1016/j.cell.2009.03.035) / Cell by X Wan (2009)
  36. Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809–820 (2010) (10.1083/jcb.201001006) / J. Cell Biol. by D Liu (2010)
  37. Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985) (10.1073/pnas.82.13.4404) / Proc. Natl Acad. Sci. USA by TL Hill (1985)
  38. Powers, A. F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009) (10.1016/j.cell.2008.12.045) / Cell by AF Powers (2009)
  39. Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol. 9, 516–522 (2007) (10.1038/ncb1576) / Nature Cell Biol. by Y Dong (2007)
  40. Lombillo, V. A., Stewart, R. J. & McIntosh, J. R. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373, 161–164 (1995) (10.1038/373161a0) / Nature by VA Lombillo (1995)
  41. McIntosh, J. R. et al. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135, 322–333 (2008) (10.1016/j.cell.2008.08.038) / Cell by JR McIntosh (2008)
  42. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996) (10.1006/jsbi.1996.0030) / J. Struct. Biol. by J Frank (1996)
  43. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003) (10.1016/S1047-8477(03)00069-8) / J. Struct. Biol. by JA Mindell (2003)
  44. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999) (10.1006/jsbi.1999.4174) / J. Struct. Biol. by SJ Ludtke (1999)
  45. Wade, R. H., Chretien, D. & Job, D. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J. Mol. Biol. 212, 775–786 (1990) (10.1016/0022-2836(90)90236-F) / J. Mol. Biol. by RH Wade (1990)
  46. Arnal, I. & Wade, R. H. How does taxol stabilize microtubules? Curr. Biol. 5, 900–908 (1995) (10.1016/S0960-9822(95)00180-1) / Curr. Biol. by I Arnal (1995)
  47. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007) (10.1016/j.jsb.2006.05.004) / J. Struct. Biol. by N Grigorieff (2007)
  48. Sachse, C. et al. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J. Mol. Biol. 371, 812–835 (2007) (10.1016/j.jmb.2007.05.088) / J. Mol. Biol. by C Sachse (2007)
  49. Stewart, A. & Grigorieff, N. Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102, 67–84 (2004) (10.1016/j.ultramic.2004.08.008) / Ultramicroscopy by A Stewart (2004)
  50. Chen, J. Z. et al. Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc. Natl Acad. Sci. USA 106, 10644–10648 (2009) (10.1073/pnas.0904024106) / Proc. Natl Acad. Sci. USA by JZ Chen (2009)
  51. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. Structure 13, 473–482 (2005) (10.1016/j.str.2005.01.006) / Structure by TD Goddard (2005)
  52. Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image Processing with ImageJ. Biophotonics International 11, 36–42 (2004) / Biophotonics International by MD Abramoff (2004)
  53. Amat, F. et al. Markov random field based automatic image alignment for electron tomography. J. Struct. Biol. 161, 260–275 (2008) (10.1016/j.jsb.2007.07.007) / J. Struct. Biol. by F Amat (2008)
  54. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996) (10.1006/jsbi.1996.0013) / J. Struct. Biol. by JR Kremer (1996)
  55. Welch, B. L. The generalisation of student's problems when several different population variances are involved. Biometrika 34, 28–35 (1947) / Biometrika by BL Welch (1947)
  56. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007) (10.1093/bioinformatics/btm404) / Bioinformatics by MA Larkin (2007)
  57. Landau, M. et al. Consurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–302 (2005) (10.1093/nar/gki370) / Nucleic Acids Res. by M Landau (2005)
Dates
Type When
Created 14 years, 10 months ago (Oct. 11, 2010, 10:28 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 1:46 p.m.)
Indexed 3 weeks ago (Aug. 2, 2025, 12:40 a.m.)
Issued 14 years, 10 months ago (Oct. 1, 2010)
Published 14 years, 10 months ago (Oct. 1, 2010)
Published Online 14 years, 10 months ago (Oct. 13, 2010)
Published Print 14 years, 10 months ago (Oct. 1, 2010)
Funders 0

None

@article{Alushin_2010, title={The Ndc80 kinetochore complex forms oligomeric arrays along microtubules}, volume={467}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature09423}, DOI={10.1038/nature09423}, number={7317}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Alushin, Gregory M. and Ramey, Vincent H. and Pasqualato, Sebastiano and Ball, David A. and Grigorieff, Nikolaus and Musacchio, Andrea and Nogales, Eva}, year={2010}, month=oct, pages={805–810} }