Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Lee, B.-H., Lee, M. J., Park, S., Oh, D.-C., Elsasser, S., Chen, P.-C., Gartner, C., Dimova, N., Hanna, J., Gygi, S. P., Wilson, S. M., King, R. W., & Finley, D. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 467(7312), 179–184.

Authors 13
  1. Byung-Hoon Lee (first)
  2. Min Jae Lee (additional)
  3. Soyeon Park (additional)
  4. Dong-Chan Oh (additional)
  5. Suzanne Elsasser (additional)
  6. Ping-Chung Chen (additional)
  7. Carlos Gartner (additional)
  8. Nevena Dimova (additional)
  9. John Hanna (additional)
  10. Steven P. Gygi (additional)
  11. Scott M. Wilson (additional)
  12. Randall W. King (additional)
  13. Daniel Finley (additional)
References 64 Referenced 813
  1. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009) (10.1146/annurev.biochem.78.081507.101607) / Annu. Rev. Biochem. by D Finley (2009)
  2. Schrader, E. K., Harstad, K. G. & Matouschek, A. Targeting proteins for degradation. Nature Chem. Biol. 5, 815–822 (2009) (10.1038/nchembio.250) / Nature Chem. Biol. by EK Schrader (2009)
  3. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000) (10.1093/emboj/19.1.94) / EMBO J. by JS Thrower (2000)
  4. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002) (10.1126/science.1075898) / Science by R Verma (2002)
  5. Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002) (10.1038/nature01071) / Nature by T Yao (2002)
  6. Lam, Y. A., Xu, W., DeMartino, G. N. & Cohen, R. E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385, 737–740 (1997) (10.1038/385737a0) / Nature by YA Lam (1997)
  7. Koulich, E., Li, X. & DeMartino, G. N. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol. Biol. Cell 19, 1072–1082 (2008) (10.1091/mbc.e07-10-1040) / Mol. Biol. Cell by E Koulich (2008)
  8. Jacobson, A. D. et al. The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26S proteasome. J. Biol. Chem. 284, 35485–35494 (2009) (10.1074/jbc.M109.052928) / J. Biol. Chem. by AD Jacobson (2009)
  9. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000) (10.1091/mbc.11.10.3425) / Mol. Biol. Cell by R Verma (2000)
  10. Borodovsky, A. et al. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187–5196 (2001) (10.1093/emboj/20.18.5187) / EMBO J. by A Borodovsky (2001)
  11. Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002) (10.1016/S1097-2765(02)00638-X) / Mol. Cell by DS Leggett (2002)
  12. Wilson, S. M. et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nature Genet. 32, 420–425 (2002) (10.1038/ng1006) / Nature Genet. by SM Wilson (2002)
  13. Chernova, T. A. et al. Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. J. Biol. Chem. 278, 52102–52115 (2003) (10.1074/jbc.M310283200) / J. Biol. Chem. by TA Chernova (2003)
  14. Anderson, C. et al. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J. Neurochem. 95, 724–731 (2005) (10.1111/j.1471-4159.2005.03409.x) / J. Neurochem. by C Anderson (2005)
  15. Hu, M. et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme Usp14. EMBO J. 24, 3747–3756 (2005) (10.1038/sj.emboj.7600832) / EMBO J. by M Hu (2005)
  16. Hanna, J. et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127, 99–111 (2006) (10.1016/j.cell.2006.07.038) / Cell by J Hanna (2006)
  17. Hanna, J., Meides, A., Zhang, D. P. & Finley, D. A ubiquitin stress response induces altered proteasome composition. Cell 129, 747–759 (2007) (10.1016/j.cell.2007.03.042) / Cell by J Hanna (2007)
  18. Crimmins, S. et al. Transgenic rescue of ataxia mice with neuronal-specific expression of ubiquitin-specific protease 14. J. Neurosci. 26, 11423–11431 (2006) (10.1523/JNEUROSCI.3600-06.2006) / J. Neurosci. by S Crimmins (2006)
  19. Crimmins, S. et al. Transgenic rescue of ataxia mice reveals a male-specific sterility defect. Dev. Biol. 325, 33–42 (2009) (10.1016/j.ydbio.2008.09.021) / Dev. Biol. by S Crimmins (2009)
  20. Chen, P.-C. et al. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29, 10909–10919 (2009) (10.1523/JNEUROSCI.2635-09.2009) / J. Neurosci. by P-C Chen (2009)
  21. Peth, A., Besche, H. C. & Goldberg, A. L. Ubiquitinated proteins activate the proteasome by binding to Usp14/Upb6, which cause 20S gate opening. Mol. Cell 36, 794–804 (2009) (10.1016/j.molcel.2009.11.015) / Mol. Cell by A Peth (2009)
  22. Catic, A. et al. Screen for ISG15-crossreactive deubiquitinases. PLoS ONE 2, e679 (2007) (10.1371/journal.pone.0000679) / PLoS ONE by A Catic (2007)
  23. Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553–3565 (2007) (10.1021/bi061994u) / Biochemistry by X Wang (2007)
  24. Yao, T. et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nature Cell Biol. 8, 994–1002 (2006) (10.1038/ncb1460) / Nature Cell Biol. by T Yao (2006)
  25. Spires-Jones, T. L., Stoothoff, W. H., de Calignon, A., Jones, P. B. & Hyman, B. T. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. 32, 150–159 (2009) (10.1016/j.tins.2008.11.007) / Trends Neurosci. by TL Spires-Jones (2009)
  26. Kwong, L. K., Uryu, K., Trojanowski, J. Q. & Lee, V. M. TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals 16, 41–51 (2008) (10.1159/000109758) / Neurosignals by LK Kwong (2008)
  27. David, D. C. et al. Proteasomal degradation of tau protein. J. Neurochem. 83, 176–185 (2002) (10.1046/j.1471-4159.2002.01137.x) / J. Neurochem. by DC David (2002)
  28. Petrucelli, L. et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13, 703–714 (2004) (10.1093/hmg/ddh083) / Hum. Mol. Genet. by L Petrucelli (2004)
  29. Todi, S. V. et al. Cellular turnover of the polyglutamine disease protein ataxin-3 is regulated by its catalytic activity. J. Biol. Chem. 282, 29348–29358 (2007) (10.1074/jbc.M704126200) / J. Biol. Chem. by SV Todi (2007)
  30. Varshavsky, A., Turner, G., Du, F. & Xie, Y. The ubiquitin system and the N-end rule pathway. Biol. Chem. 381, 779–789 (2000) (10.1515/BC.2000.101) / Biol. Chem. by A Varshavsky (2000)
  31. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M. G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnol. 18, 538–543 (2000) (10.1038/75406) / Nature Biotechnol. by NP Dantuma (2000)
  32. Saeki, Y., Isono, E. & Toh-E, A. Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring proteasome activity. Methods Enzymol. 399, 215–227 (2005) (10.1016/S0076-6879(05)99014-9) / Methods Enzymol. by Y Saeki (2005)
  33. Kirkpatrick, D. S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biol. 8, 700–710 (2006) (10.1038/ncb1436) / Nature Cell Biol. by DS Kirkpatrick (2006)
  34. Amerik, A. Y., Li, S. J. & Hochstrasser, M. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae . Biol. Chem. 381, 981–992 (2000) (10.1515/BC.2000.121) / Biol. Chem. by AY Amerik (2000)
  35. Hanna, J., Leggett, D. S. & Finley, D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 23, 9251–9261 (2003) (10.1128/MCB.23.24.9251-9261.2003) / Mol. Cell. Biol. by J Hanna (2003)
  36. Shabek, N., Herman-Bachinsky, Y. & Ciechanover, A. Ubiquitin degradation with its substrate, or as a monomer in a ubiquitination-independent mode, provides clues to proteasome regulation. Proc. Natl Acad. Sci. USA 106, 11907–11912 (2009) (10.1073/pnas.0905746106) / Proc. Natl Acad. Sci. USA by N Shabek (2009)
  37. Hoyt, M. A., Zhang, M. & Coffino, P. Probing the ubiquitin/proteasome system with ornithine decarboxylase, a ubiquitin-independent substrate. Methods Enzymol. 398, 399–413 (2005) (10.1016/S0076-6879(05)98033-6) / Methods Enzymol. by MA Hoyt (2005)
  38. Stadtman, E. R. Protein oxidation and aging. Free Radic. Res. 40, 1250–1258 (2006) (10.1080/10715760600918142) / Free Radic. Res. by ER Stadtman (2006)
  39. Ahmed, E. K., Picot, C. R., Bulteau, A. L. & Friguet, B. Protein oxidative modifications and replicative senescence of WI-38 human embryonic fibroblasts. Ann. NY Acad. Sci. 1119, 88–96 (2007) (10.1196/annals.1404.020) / Ann. NY Acad. Sci. by EK Ahmed (2007)
  40. Hamazaki, J. et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 25, 4524–4536 (2006) (10.1038/sj.emboj.7601338) / EMBO J. by J Hamazaki (2006)
  41. Qiu, X. B. et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 25, 5742–5753 (2006) (10.1038/sj.emboj.7601450) / EMBO J. by XB Qiu (2006)
  42. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008) (10.1038/nature06926) / Nature by K Husnjak (2008)
  43. Chauhan, D., Bianchi, G. & Anderson, K. C. Targeting the UPS as therapy in multiple myeloma. BMC Biochem. 9 (Suppl. 1). S1 (2008) (10.1186/1471-2091-9-S1-S1) / BMC Biochem. by D Chauhan (2008)
  44. Muchamuel, T. et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Med. 15, 781–787 (2009) (10.1038/nm.1978) / Nature Med. by T Muchamuel (2009)
  45. Chondrogianni, N. et al. Overexpression of proteasome β5 subunit increases the amount of assembled proteasome and confers ameliorated response to oxidative stress and higher survival rates. J. Biol. Chem. 280, 11840–11850 (2005) (10.1074/jbc.M413007200) / J. Biol. Chem. by N Chondrogianni (2005)
  46. Tonoki, A. et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell. Biol. 29, 1095–1106 (2009) (10.1128/MCB.01227-08) / Mol. Cell. Biol. by A Tonoki (2009)
  47. Lehman, N. L. The ubiquitin proteasome system in neuropathology. Acta Neuropathol. 118, 329–347 (2009) (10.1007/s00401-009-0560-x) / Acta Neuropathol. by NL Lehman (2009)
  48. Hinault, M. P., Ben-Zvi, A. & Goloubinoff, P. Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J. Mol. Neurosci. 30, 249–265 (2006) (10.1385/JMN:30:3:249) / J. Mol. Neurosci. by MP Hinault (2006)
  49. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008) (10.1126/science.1141448) / Science by WE Balch (2008)
  50. Goldberg, A. L. Protein degradation and protection against misfolded and damaged proteins. Nature 426, 895–899 (2003) (10.1038/nature02263) / Nature by AL Goldberg (2003)
  51. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009) (10.1016/j.cell.2009.04.042) / Cell by ME Sowa (2009)
  52. Elsasser, S., Schmidt, M. & Finley, D. Characterization of the proteasome using native gel electrophoresis. Methods Enzymol. 398, 353–363 (2005) (10.1016/S0076-6879(05)98029-4) / Methods Enzymol. by S Elsasser (2005)
  53. Kleijnen, M. F. et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nature Struct. Mol. Biol. 14, 1180–1188 (2007) (10.1038/nsmb1335) / Nature Struct. Mol. Biol. by MF Kleijnen (2007)
  54. Kusmierczyk, A. R., Kunjappu, M. J., Funakoshi, M. & Hochstrasser, M. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nature Struct. Mol. Biol. 15, 237–244 (2008) (10.1038/nsmb.1389) / Nature Struct. Mol. Biol. by AR Kusmierczyk (2008)
  55. Park, S. et al. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459, 866–870 (2009) (10.1038/nature08065) / Nature by S Park (2009)
  56. Malo, N., Hanley, J., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in high-throughput screening data analysis. Nature Biotechnol. 24, 167–175 (2006) (10.1038/nbt1186) / Nature Biotechnol. by N Malo (2006)
  57. Kobayashi, H. et al. Hrs, a mammalian master molecule in vesicular transport and protein sorting, suppresses the degradation of ESCRT proteins signal transducing adaptor molecule 1 and 2. J. Biol. Chem. 280, 10468–10477 (2005) (10.1074/jbc.M409969200) / J. Biol. Chem. by H Kobayashi (2005)
  58. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004) (10.1038/nature03029) / Nature by A Kuma (2004)
  59. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010) (10.1016/j.cell.2010.01.028) / Cell by N Mizushima (2010)
  60. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983) (10.1016/0022-1759(83)90303-4) / J. Immunol. Methods by T Mosmann (1983)
  61. Li, X., Traganos, F., Melamed, M. R. & Darzynkiewicz, Z. Single-step procedure for labeling DNA strand breaks with fluorescein- or BODIPY-conjugated deoxynucleotides: detection of apoptosis and bromodeoxyuridine incorporation. Cytometry 20, 172–180 (1995) (10.1002/cyto.990200210) / Cytometry by X Li (1995)
  62. Jordan, M. A., Thrower, D. & Wilson, L. Mechanism of inhibition of cell proliferation by Vinca Alkaloids. Cancer Res. 51, 2212–2222 (1991) / Cancer Res. by MA Jordan (1991)
  63. Chondrogianni, N. et al. Central role of the proteasome in senescence and survival of human fibroblasts. J. Biol. Chem. 278, 28026–28037 (2003) (10.1074/jbc.M301048200) / J. Biol. Chem. by N Chondrogianni (2003)
  64. Kwak, M. K. et al. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 23, 8786–8794 (2003) (10.1128/MCB.23.23.8786-8794.2003) / Mol. Cell. Biol. by MK Kwak (2003)
Dates
Type When
Created 14 years, 11 months ago (Sept. 6, 2010, 5:21 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 1:45 p.m.)
Indexed 1 day, 19 hours ago (Aug. 21, 2025, 12:51 p.m.)
Issued 14 years, 11 months ago (Sept. 1, 2010)
Published 14 years, 11 months ago (Sept. 1, 2010)
Published Print 14 years, 11 months ago (Sept. 1, 2010)
Funders 0

None

@article{Lee_2010, title={Enhancement of proteasome activity by a small-molecule inhibitor of USP14}, volume={467}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature09299}, DOI={10.1038/nature09299}, number={7312}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Lee, Byung-Hoon and Lee, Min Jae and Park, Soyeon and Oh, Dong-Chan and Elsasser, Suzanne and Chen, Ping-Chung and Gartner, Carlos and Dimova, Nevena and Hanna, John and Gygi, Steven P. and Wilson, Scott M. and King, Randall W. and Finley, Daniel}, year={2010}, month=sep, pages={179–184} }