Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Rosenbaum, D. M., Rasmussen, S. G. F., & Kobilka, B. K. (2009). The structure and function of G-protein-coupled receptors. Nature, 459(7245), 356–363.

Authors 3
  1. Daniel M. Rosenbaum (first)
  2. Søren G. F. Rasmussen (additional)
  3. Brian K. Kobilka (additional)
References 70 Referenced 2,054
  1. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003). This paper provides a comprehensive analysis of sequence relationships between G-protein-coupled receptors in the human genome. (10.1124/mol.63.6.1256) / Mol. Pharmacol. by R Fredriksson (2003)
  2. Hoffman, B. B. & Lefkowitz, R. J. Adrenergic receptors in the heart. Annu. Rev. Physiol. 44, 475–484 (1982). (10.1146/annurev.ph.44.030182.002355) / Annu. Rev. Physiol. by BB Hoffman (1982)
  3. Samama, P., Pei, G., Costa, T., Cotecchia, S. & Lefkowitz, R. J. Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. Mol. Pharmacol. 45, 390–394 (1994). (10.1016/S0026-895X(25)10009-6) / Mol. Pharmacol. by P Samama (1994)
  4. Chidiac, P., Hebert, T. E., Valiquette, M., Dennis, M. & Bouvier, M. Inverse agonist activity of beta-adrenergic antagonists. Mol. Pharmacol. 45, 490–499 (1994). (10.1016/S0026-895X(25)10022-9) / Mol. Pharmacol. by P Chidiac (1994)
  5. Xiao, R. P., Cheng, H., Zhou, Y. Y., Kuschel, M. & Lakatta, E. G. Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ. Res. 85, 1092–1100 (1999). (10.1161/01.RES.85.11.1092) / Circ. Res. by RP Xiao (1999)
  6. Shenoy, S. K. et al. Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 (2006). (10.1074/jbc.M506576200) / J. Biol. Chem. by SK Shenoy (2006)
  7. Azzi, M. et al. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl Acad. Sci. USA 100, 11406–11411 (2003). (10.1073/pnas.1936664100) / Proc. Natl Acad. Sci. USA by M Azzi (2003)
  8. Freedman, N. J. & Lefkowitz, R. J. Desensitization of G protein-coupled receptors. Recent Prog. Horm. Res. 51, 319–351; discussion 352–353 (1996). / Recent Prog. Horm. Res. by NJ Freedman (1996)
  9. Hanyaloglu, A. C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008). (10.1146/annurev.pharmtox.48.113006.094830) / Annu. Rev. Pharmacol. Toxicol. by AC Hanyaloglu (2008)
  10. Terrillon, S. & Bouvier, M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34 (2004). (10.1038/sj.embor.7400052) / EMBO Rep. by S Terrillon (2004)
  11. Insel, P. A. et al. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann. NY Acad. Sci. 1047, 166–172 (2005). (10.1196/annals.1341.015) / Ann. NY Acad. Sci. by PA Insel (2005)
  12. Ghanouni, P., Steenhuis, J. J., Farrens, D. L. & Kobilka, B. K. Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc. Natl Acad. Sci. USA 98, 5997–6002 (2001). (10.1073/pnas.101126198) / Proc. Natl Acad. Sci. USA by P Ghanouni (2001)
  13. Swaminath, G. et al. Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. J. Biol. Chem. 279, 686–691 (2004). (10.1074/jbc.M310888200) / J. Biol. Chem. by G Swaminath (2004)
  14. Swaminath, G. et al. Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem. 280, 22165–22171 (2005). (10.1074/jbc.M502352200) / J. Biol. Chem. by G Swaminath (2005)
  15. Galandrin, S., Oligny-Longpre, G. & Bouvier, M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423–430 (2007). (10.1016/j.tips.2007.06.005) / Trends Pharmacol. Sci. by S Galandrin (2007)
  16. Wisler, J. W. et al. A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc. Natl Acad. Sci. USA 104, 16657–16662 (2007). (10.1073/pnas.0707936104) / Proc. Natl Acad. Sci. USA by JW Wisler (2007)
  17. Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007). (10.1016/j.tips.2007.06.003) / Trends Pharmacol. Sci. by BK Kobilka (2007)
  18. Krebs, A., Villa, C., Edwards, P. C. & Schertler, G. F. Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J. Mol. Biol. 282, 991–1003 (1998). (10.1006/jmbi.1998.2070) / J. Mol. Biol. by A Krebs (1998)
  19. Schertler, G. F., Villa, C. & Henderson, R. Projection structure of rhodopsin. Nature 362, 770–772 (1993). This paper presents the first three-dimensional structure of a G-protein-coupled receptor using cryoelectron microscopy of two-dimensional crystals. (10.1038/362770a0) / Nature by GF Schertler (1993)
  20. Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007). This is the first reported three-dimensional crystal structure of a ligand-activated G-protein-coupled receptor. (10.1038/nature06325) / Nature by SG Rasmussen (2007)
  21. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007). (10.1126/science.1150609) / Science by DM Rosenbaum (2007)
  22. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G-protein-coupled receptor. Science 318, 1258–1265 (2007). (10.1126/science.1150577) / Science by V Cherezov (2007)
  23. Hanson, M. A. et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16, 897–905 (2008). (10.1016/j.str.2008.05.001) / Structure by MA Hanson (2008)
  24. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008). (10.1038/nature07101) / Nature by T Warne (2008)
  25. Jaakola, V. P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008). (10.1126/science.1164772) / Science by VP Jaakola (2008)
  26. Palczewski, K. et al. Crystal structure of rhodopsin: A G-protein-coupled receptor. Science 289, 739–745 (2000). This paper presents the first three-dimensional crystal structure of a G-protein-coupled receptor, the visual photoreceptor rhodopsin. (10.1126/science.289.5480.739) / Science by K Palczewski (2000)
  27. Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004). (10.1016/j.jmb.2004.07.044) / J. Mol. Biol. by T Okada (2004)
  28. Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004). (10.1016/j.jmb.2004.08.090) / J. Mol. Biol. by J Li (2004)
  29. Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein coupled receptors. Methods Neurosci. 25, 366–428 (1995). (10.1016/S1043-9471(05)80049-7) / Methods Neurosci. by JA Ballesteros (1995)
  30. Shi, L. et al. β2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J. Biol. Chem. 277, 40989–40996 (2002). (10.1074/jbc.M206801200) / J. Biol. Chem. by L Shi (2002)
  31. Horn, F. et al. GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res. 31, 294–297 (2003). (10.1093/nar/gkg103) / Nucleic Acids Res. by F Horn (2003)
  32. Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Rev. Drug Discov. 8, 41–54 (2009). (10.1038/nrd2760) / Nature Rev. Drug Discov. by PJ Conn (2009)
  33. Baker, J. G. The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. Br. J. Pharmacol. 144, 317–322 (2005). (10.1038/sj.bjp.0706048) / Br. J. Pharmacol. by JG Baker (2005)
  34. Sugimoto, Y. et al. β1-selective agonist (-)-1-(3,4-dimethoxyphenetylamino)-3-(3,4-dihydroxy)-2-propanol [(-)-RO363] differentially interacts with key amino acids responsible for β1-selective binding in resting and active states. J. Pharmacol. Exp. Ther. 301, 51–58 (2002). (10.1124/jpet.301.1.51) / J. Pharmacol. Exp. Ther. by Y Sugimoto (2002)
  35. Vogel, R. et al. Functional role of the “ionic lock”—an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 380, 648–655 (2008). (10.1016/j.jmb.2008.05.022) / J. Mol. Biol. by R Vogel (2008)
  36. Ballesteros, J. A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001). (10.1074/jbc.M103747200) / J. Biol. Chem. by JA Ballesteros (2001)
  37. Rasmussen, S. G. et al. Mutation of a highly conserved aspartic acid in the β2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol. Pharmacol. 56, 175–184 (1999). (10.1124/mol.56.1.175) / Mol. Pharmacol. by SG Rasmussen (1999)
  38. Yao, X. et al. Coupling ligand structure to specific conformational switches in the β2-adrenoceptor. Nature Chem. Biol. 2, 417–422 (2006). (10.1038/nchembio801) / Nature Chem. Biol. by X Yao (2006)
  39. Bond, R. A. & Ijzerman, A. P. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci. 27, 92–96 (2006). (10.1016/j.tips.2005.12.007) / Trends Pharmacol. Sci. by RA Bond (2006)
  40. Barak, L. S., Menard, L., Ferguson, S. S., Colapietro, A. M. & Caron, M. G. The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the β2-adrenergic receptor. Biochemistry 34, 15407–15414 (1995). (10.1021/bi00047a003) / Biochemistry by LS Barak (1995)
  41. Okada, T. et al. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc. Natl Acad. Sci. USA 99, 5982–5987 (2002). (10.1073/pnas.082666399) / Proc. Natl Acad. Sci. USA by T Okada (2002)
  42. Pardo, L., Deupi, X., Dolker, N., Lopez-Rodriguez, M. L. & Campillo, M. The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors. ChemBioChem 8, 19–24 (2007). (10.1002/cbic.200600429) / ChemBioChem by L Pardo (2007)
  43. Dixon, R. A. et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79 (1986). This paper reports the cloning of the first ligand-activated G-protein-coupled receptor. (10.1038/321075a0) / Nature by RA Dixon (1986)
  44. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008). (10.1038/nature07063) / Nature by JH Park (2008)
  45. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008). This paper presents the high-resolution stucture of an active-state G-protein-coupled receptor in complex with a G-protein peptide. (10.1038/nature07330) / Nature by P Scheerer (2008)
  46. Lamb, T. D. & Pugh, E. N. Jr. Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 23, 307–380 (2004). (10.1016/j.preteyeres.2004.03.001) / Prog. Retin. Eye Res. by TD Lamb (2004)
  47. Vogel, R. & Siebert, F. Conformations of the active and inactive states of opsin. J. Biol. Chem. 276, 38487–38493 (2001). (10.1074/jbc.M105423200) / J. Biol. Chem. by R Vogel (2001)
  48. Cohen, G. B., Oprian, D. D. & Robinson, P. R. Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. Biochemistry 31, 12592–12601 (1992). (10.1021/bi00165a008) / Biochemistry by GB Cohen (1992)
  49. Ahuja, S. et al. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nature Struct. Mol. Biol. 16, 168–175 (2009). (10.1038/nsmb.1549) / Nature Struct. Mol. Biol. by S Ahuja (2009)
  50. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996). This is the first biophysical study to demonstrate movement of transmembrane segment 6 upon activation of rhodopsin. (10.1126/science.274.5288.768) / Science by DL Farrens (1996)
  51. Altenbach, C., Kusnetzow, A. K., Ernst, O. P., Hofmann, K. P. & Hubbell, W. L. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl Acad. Sci. USA 105, 7439–7444 (2008). (10.1073/pnas.0802515105) / Proc. Natl Acad. Sci. USA by C Altenbach (2008)
  52. Strader, C. D., Candelore, M. R., Hill, W. S., Sigal, I. S. & Dixon, R. A. Identification of two serine residues involved in agonist activation of the β-adrenergic receptor. J. Biol. Chem. 264, 13572–13578 (1989). (10.1016/S0021-9258(18)80035-7) / J. Biol. Chem. by CD Strader (1989)
  53. Liapakis, G. et al. The forgotten serine. A critical role for Ser-2035.42 in ligand binding to and activation of the β2-adrenergic receptor. J. Biol. Chem. 275, 37779–37788 (2000). (10.1074/jbc.M002092200) / J. Biol. Chem. by G Liapakis (2000)
  54. Strader, C. D. et al. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J. Biol. Chem. 263, 10267–10271 (1988). (10.1016/S0021-9258(19)81509-0) / J. Biol. Chem. by CD Strader (1988)
  55. Jiang, Q., Lee, B. X., Glashofer, M., van Rhee, A. M. & Jacobson, K. A. Mutagenesis reveals structure-activity parallels between human A2A adenosine receptors and biogenic amine G protein-coupled receptors. J. Med. Chem. 40, 2588–2595 (1997). (10.1021/jm970084v) / J. Med. Chem. by Q Jiang (1997)
  56. Patny, A., Desai, P. V. & Avery, M. A. Homology modeling of G-protein-coupled receptors and implications in drug design. Curr. Med. Chem. 13, 1667–1691 (2006). (10.2174/092986706777442002) / Curr. Med. Chem. by A Patny (2006)
  57. Kolb, P. et al. Structure-based discovery of β2-adrenergic receptor ligands. Proc. Natl Acad. Sci. USA 106, 6843–6848 (2009). (10.1073/pnas.0812657106) / Proc. Natl Acad. Sci. USA by P Kolb (2009)
  58. Ghanouni, P. et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β2 adrenergic receptor. J. Biol. Chem. 276, 24433–24436 (2001). (10.1074/jbc.C100162200) / J. Biol. Chem. by P Ghanouni (2001)
  59. Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 16123–16128 (2006). (10.1073/pnas.0608022103) / Proc. Natl Acad. Sci. USA by D Salom (2006)
  60. Knierim, B., Hofmann, K. P., Ernst, O. P. & Hubbell, W. L. Sequence of late molecular events in the activation of rhodopsin. Proc. Natl Acad. Sci. USA 104, 20290–20295 (2007). (10.1073/pnas.0710393104) / Proc. Natl Acad. Sci. USA by B Knierim (2007)
  61. De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980). (10.1016/S0021-9258(20)79672-9) / J. Biol. Chem. by A De Lean (1980)
  62. Hubbell, W. L., Altenbach, C., Hubbell, C. M. & Khorana, H. G. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem. 63, 243–290 (2003). (10.1016/S0065-3233(03)63010-X) / Adv. Protein Chem. by WL Hubbell (2003)
  63. Werner, K., Richter, C., Klein-Seetharaman, J. & Schwalbe, H. Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J. Biomol. NMR 40, 49–53 (2008). (10.1007/s10858-007-9205-3) / J. Biomol. NMR by K Werner (2008)
  64. Standfuss, J. et al. Crystal structure of a thermally stable rhodopsin mutant. J. Mol. Biol. 372, 1179–1188 (2007). (10.1016/j.jmb.2007.03.007) / J. Mol. Biol. by J Standfuss (2007)
  65. Okada, T. et al. X-ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J. Struct. Biol. 130, 73–80 (2000). (10.1006/jsbi.1999.4209) / J. Struct. Biol. by T Okada (2000)
  66. Serrano-Vega, M. J., Magnani, F., Shibata, Y. & Tate, C. G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl Acad. Sci. USA 105, 877–882 (2008). (10.1073/pnas.0711253105) / Proc. Natl Acad. Sci. USA by MJ Serrano-Vega (2008)
  67. Day, P. W. et al. A monoclonal antibody for G protein-coupled receptor crystallography. Nature Methods 4, 927–929 (2007). (10.1038/nmeth1112) / Nature Methods by PW Day (2007)
  68. Faham, S. & Bowie, J. U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316, 1–6 (2002). (10.1006/jmbi.2001.5295) / J. Mol. Biol. by S Faham (2002)
  69. Faham, S. et al. Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci. 14, 836–840 (2005). (10.1110/ps.041167605) / Protein Sci. by S Faham (2005)
  70. Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, doi:10.1146/annurev.biophys.050708.133655 (2008). (10.1146/annurev.biophys.050708.133655)
Dates
Type When
Created 16 years, 3 months ago (May 20, 2009, 11:28 a.m.)
Deposited 6 months, 2 weeks ago (Feb. 9, 2025, 11:18 a.m.)
Indexed 46 minutes ago (Aug. 29, 2025, 2:06 p.m.)
Issued 16 years, 3 months ago (May 1, 2009)
Published 16 years, 3 months ago (May 1, 2009)
Published Online 16 years, 3 months ago (May 20, 2009)
Published Print 16 years, 3 months ago (May 1, 2009)
Funders 0

None

@article{Rosenbaum_2009, title={The structure and function of G-protein-coupled receptors}, volume={459}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature08144}, DOI={10.1038/nature08144}, number={7245}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Rosenbaum, Daniel M. and Rasmussen, Søren G. F. and Kobilka, Brian K.}, year={2009}, month=may, pages={356–363} }