Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Sakuno, T., Tada, K., & Watanabe, Y. (2009). Kinetochore geometry defined by cohesion within the centromere. Nature, 458(7240), 852–858.

Authors 3
  1. Takeshi Sakuno (first)
  2. Kenji Tada (additional)
  3. Yoshinori Watanabe (additional)
References 50 Referenced 153
  1. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997) (10.1126/science.275.5300.632) / Science by RB Nicklas (1997)
  2. Tanaka, T. U. Bi-orienting chromosomes on the mitotic spindle. Curr. Opin. Cell Biol. 14, 365–371 (2002) (10.1016/S0955-0674(02)00328-9) / Curr. Opin. Cell Biol. by TU Tanaka (2002)
  3. Moore, D. P. & Orr-Weaver, T. L. Chromosome segregation during meiosis: building an unambivalent bivalent. Curr. Top. Dev. Biol. 37, 263–299 (1998) (10.1016/S0070-2153(08)60177-5) / Curr. Top. Dev. Biol. by DP Moore (1998)
  4. Petronczki, M., Siomos, M. F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003) (10.1016/S0092-8674(03)00083-7) / Cell by M Petronczki (2003)
  5. Östergren, G. The mechanism of co-orientation in bivalents and multivalents. Hereditas 37, 85–156 (1951) (10.1111/j.1601-5223.1951.tb02891.x) / Hereditas by G Östergren (1951)
  6. Brenner, S., Pepper, D., Berns, M. W., Tan, E. & Brinkley, B. R. Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J. Cell Biol. 91, 95–102 (1981) (10.1083/jcb.91.1.95) / J. Cell Biol. by S Brenner (1981)
  7. Goldstein, L. S. Kinetochore structure and its role in chromosome orientation during the first meiotic division in male D. melanogaster . Cell 25, 591–602 (1981) (10.1016/0092-8674(81)90167-7) / Cell by LS Goldstein (1981)
  8. Parra, M. T. et al. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J. Cell Sci. 117, 1221–1234 (2004) (10.1242/jcs.00947) / J. Cell Sci. by MT Parra (2004)
  9. Lee, J. et al. Specific regulation of CENP-E and kinetochores during meiosis I/meiosis II transition in pig oocytes. Mol. Reprod. Dev. 56, 51–62 (2000) (10.1002/(SICI)1098-2795(200005)56:1<51::AID-MRD7>3.0.CO;2-N) / Mol. Reprod. Dev. by J Lee (2000)
  10. Hauf, S. & Watanabe, Y. Kinetochore orientation in mitosis and meiosis. Cell 119, 317–327 (2004) (10.1016/j.cell.2004.10.014) / Cell by S Hauf (2004)
  11. Takahashi, K. et al. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3, 819–835 (1992) (10.1091/mbc.3.7.819) / Mol. Biol. Cell by K Takahashi (1992)
  12. Pidoux, A. & Allshire, R. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res. 12, 521–534 (2004) (10.1023/B:CHRO.0000036586.81775.8b) / Chromosome Res. by A Pidoux (2004)
  13. Watanabe, Y., Yokobayashi, S., Yamamoto, M. & Nurse, P. Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409, 359–363 (2001) (10.1038/35053103) / Nature by Y Watanabe (2001)
  14. Tomonaga, T. et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14, 2757–2770 (2000) (10.1101/gad.832000) / Genes Dev. by T Tomonaga (2000)
  15. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001) (10.1126/science.1064027) / Science by P Bernard (2001)
  16. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol. 4, 89–93 (2002) (10.1038/ncb739) / Nature Cell Biol. by N Nonaka (2002)
  17. Yokobayashi, S. & Watanabe, Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123, 803–817 (2005) (10.1016/j.cell.2005.09.013) / Cell by S Yokobayashi (2005)
  18. Toth, A. et al. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103, 1155–1168 (2000) (10.1016/S0092-8674(00)00217-8) / Cell by A Toth (2000)
  19. Monje-Casas, F., Prabhu, V. R., Lee, B. H., Boselli, M. & Amon, A. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128, 477–490 (2007) (10.1016/j.cell.2006.12.040) / Cell by F Monje-Casas (2007)
  20. Araki, H. et al. Site-specific recombinase, R, encoded by yeast plasmid pSR1. J. Mol. Biol. 225, 25–37 (1992) (10.1016/0022-2836(92)91023-I) / J. Mol. Biol. by H Araki (1992)
  21. Chang, C. R., Wu, C. S., Hom, Y. & Gartenberg, M. R. Targeting of cohesin by transcriptionally silent chromatin. Genes Dev. 19, 3031–3042 (2005) (10.1101/gad.1356305) / Genes Dev. by CR Chang (2005)
  22. Yokobayashi, S., Yamamoto, M. & Watanabe, Y. Cohesins determine the attachment manner of kinetochores to spindle microtubules at meiosis I in fission yeast. Mol. Cell. Biol. 23, 3965–3973 (2003) (10.1128/MCB.23.11.3965-3973.2003) / Mol. Cell. Biol. by S Yokobayashi (2003)
  23. Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999) (10.1038/22774) / Nature by Y Watanabe (1999)
  24. Goshima, G. & Yanagida, M. Establishing biorientation occurs with precocious separation of sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100, 619–633 (2000) (10.1016/S0092-8674(00)80699-6) / Cell by G Goshima (2000)
  25. He, X., Asthana, S. & Sorger, P. K. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101, 763–775 (2000) (10.1016/S0092-8674(00)80888-0) / Cell by X He (2000)
  26. Ocampo-Hafalla, M. T., Katou, Y., Shirahige, K. & Uhlmann, F. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma 116, 531–544 (2007) (10.1007/s00412-007-0118-4) / Chromosoma by MT Ocampo-Hafalla (2007)
  27. Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223–233 (1994) (10.1083/jcb.124.3.223) / J. Cell Biol. by CL Rieder (1994)
  28. Kurzbauer, R. et al. Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc. Natl Acad. Sci. USA 101, 10984–10989 (2004) (10.1073/pnas.0403435101) / Proc. Natl Acad. Sci. USA by R Kurzbauer (2004)
  29. Gruber, S. et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127, 523–537 (2006) (10.1016/j.cell.2006.08.048) / Cell by S Gruber (2006)
  30. Kitajima, T. S., Kawashima, S. A. & Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517 (2004) (10.1038/nature02312) / Nature by TS Kitajima (2004)
  31. Rabitsch, K. P. et al. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr. Biol. 14, 287–301 (2004) (10.1016/j.cub.2004.01.051) / Curr. Biol. by KP Rabitsch (2004)
  32. Yamamoto, A. et al. Spindle checkpoint activation at meiosis I advances anaphase II onset via meiosis-specific APC/C regulation. J. Cell Biol. 182, 277–288 (2008) (10.1083/jcb.200802053) / J. Cell Biol. by A Yamamoto (2008)
  33. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000) (10.1038/35019529) / Nature Cell Biol. by T Tanaka (2000)
  34. Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076–1083 (2004) (10.1038/nsmb845) / Nature Struct. Mol. Biol. by BA Sullivan (2004)
  35. Amor, D. J., Kalitsis, P., Sumer, H. & Choo, K. H. A. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol. 14, 359–368 (2004) (10.1016/j.tcb.2004.05.009) / Trends Cell Biol. by DJ Amor (2004)
  36. Dewar, H., Tanaka, K., Nasmyth, K. & Tanaka, T. U. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93–97 (2004) (10.1038/nature02328) / Nature by H Dewar (2004)
  37. Eckert, C. A., Gravdahl, D. J. & Megee, P. C. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev. 21, 278–291 (2007) (10.1101/gad.1498707) / Genes Dev. by CA Eckert (2007)
  38. Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002) (10.1016/S1534-5807(02)00135-1) / Dev. Cell by MD Blower (2002)
  39. Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores. From epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003) (10.1016/S0092-8674(03)00115-6) / Cell by DW Cleveland (2003)
  40. Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell 108, 317–329 (2002) (10.1016/S0092-8674(02)00633-5) / Cell by TU Tanaka (2002)
  41. Cimini, D., Wan, X., Hirel, C. B. & Salmon, E. D. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 16, 1711–1718 (2006) (10.1016/j.cub.2006.07.022) / Curr. Biol. by D Cimini (2006)
  42. Kawashima, S. A. et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 21, 420–435 (2007) (10.1101/gad.1497307) / Genes Dev. by SA Kawashima (2007)
  43. Winey, M., Morgan, G. P., Straight, P. D., Giddings, T. H. & Mastronarde, D. N. Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles. Mol. Biol. Cell 16, 1178–1188 (2005) (10.1091/mbc.e04-09-0765) / Mol. Biol. Cell by M Winey (2005)
  44. Yu, H.-G. & Dawe, R. K. Functional redundancy in the maize meiotic kinetochore. J. Cell Biol. 151, 131–141 (2000) (10.1083/jcb.151.1.131) / J. Cell Biol. by H-G Yu (2000)
  45. Chelysheva, L. et al. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J. Cell Sci. 118, 4621–4632 (2005) (10.1242/jcs.02583) / J. Cell Sci. by L Chelysheva (2005)
  46. Yamamoto, A. & Hiraoka, Y. Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO J. 22, 2284–2296 (2003) (10.1093/emboj/cdg222) / EMBO J. by A Yamamoto (2003)
  47. Nabeshima, K. et al. Dynamics of centromeres during metaphase–anaphase transition in fission yeast: dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 9, 3211–3225 (1998) (10.1091/mbc.9.11.3211) / Mol. Biol. Cell by K Nabeshima (1998)
  48. Horie, S. et al. The Schizosaccharomyces pombe mei4+ gene encodes a meiosis-specific transcription factor containing a forkhead DNA-binding domain. Mol. Cell. Biol. 18, 2118–2129 (1998) (10.1128/MCB.18.4.2118) / Mol. Cell. Biol. by S Horie (1998)
  49. Izawa, D., Goto, M., Yamashita, A., Yamano, H. & Yamamoto, M. Fission yeast Mes1p ensures the onset of meiosis II by blocking degradation of cyclin Cdc13p. Nature 434, 529–533 (2005) (10.1038/nature03406) / Nature by D Izawa (2005)
  50. Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218–233 (1995) (10.1101/gad.9.2.218) / Genes Dev. by RC Allshire (1995)
Dates
Type When
Created 16 years, 4 months ago (April 15, 2009, 11 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:22 p.m.)
Indexed 3 days, 13 hours ago (Aug. 21, 2025, 12:35 p.m.)
Issued 16 years, 4 months ago (April 1, 2009)
Published 16 years, 4 months ago (April 1, 2009)
Published Print 16 years, 4 months ago (April 1, 2009)
Funders 0

None

@article{Sakuno_2009, title={Kinetochore geometry defined by cohesion within the centromere}, volume={458}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature07876}, DOI={10.1038/nature07876}, number={7240}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Sakuno, Takeshi and Tada, Kenji and Watanabe, Yoshinori}, year={2009}, month=apr, pages={852–858} }