Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Hÿtch, M., Houdellier, F., Hüe, F., & Snoeck, E. (2008). Nanoscale holographic interferometry for strain measurements in electronic devices. Nature, 453(7198), 1086–1089.

Authors 4
  1. Martin Hÿtch (first)
  2. Florent Houdellier (additional)
  3. Florian Hüe (additional)
  4. Etienne Snoeck (additional)
References 35 Referenced 420
  1. ITRS, International Technology Roadmap for Semiconductors, 2005 edn Available online at 〈 http://www.itrs.net/reports.html 〉.
  2. Ghani, T. et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. IEDM Tech. Digest 978–980 (IEEE International, 2003)
  3. Antoniadis, D. A. et al. Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations. IBM J. Res. Dev. 50, 363–376 (2006) (10.1147/rd.504.0363) / IBM J. Res. Dev. by DA Antoniadis (2006)
  4. Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T. & Lochtefeld, A. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 011101 (2005) (10.1063/1.1819976) / J. Appl. Phys. by ML Lee (2005)
  5. Thompson, S. E., Sun, G. Y., Choi, Y. S. & Nishida, T. Uniaxial-process-induced strained-Si: Extending the CMOS roadmap. IEEE Trans. Electron. Dev. 53, 1010–1020 (2006) (10.1109/TED.2006.872088) / IEEE Trans. Electron. Dev. by SE Thompson (2006)
  6. He, R. R. & Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nature Nanotechnol. 1, 42–46 (2006) (10.1038/nnano.2006.53) / Nature Nanotechnol. by RR He (2006)
  7. Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006) (10.1038/nature04706) / Nature by RS Jacobsen (2006)
  8. Acosta, A. & Sood, S. Engineering strained silicon: looking back and into the future. IEEE Potentials 25, 31–34 (2006) (10.1109/MP.2006.1664067) / IEEE Potentials by A Acosta (2006)
  9. Parton, E. & Verheyen, P. Strained silicon—the key to sub-45 nm CMOS. III–Vs Rev. 19, 28–31 (2006) / III–Vs Rev. by E Parton (2006)
  10. Foran, B., Clark, M. H. & Lian, G. Strain measurement by transmission electron microscopy. Future Fab Intl 20, 127–129 (2006) / Future Fab Intl by B Foran (2006)
  11. Hÿtch, M. J., Snoeck, E., Houdellier, F. & Hüe, F. Procédé et système de mesure de déformations à l’échelle nanométrique. French Patent Application FR 07 06711.
  12. Hirsch, P. B., Howie, A., Nicholson, R., Pashley, D. W. & Whelan, M. J. Electron Microscopy of Thin Crystals 2nd edn, ch. 15 (Krieger, Malabar, Florida, 1977) / Electron Microscopy of Thin Crystals by PB Hirsch (1977)
  13. McCartney, M. R. & Smith, D. J. Electron holography: Phase imaging with nanometer resolution. Annu. Rev. Mater. Res. 37, 729–767 (2007) (10.1146/annurev.matsci.37.052506.084219) / Annu. Rev. Mater. Res. by MR McCartney (2007)
  14. Zhang, P. et al. Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction. Appl. Phys. Lett. 89, 161907 (2006) (10.1063/1.2362978) / Appl. Phys. Lett. by P Zhang (2006)
  15. Usuda, K., Numata, T., Irisawa, T., Hirashita, N. & Takagi, S. Strain characterization in SOI and strained-Si on SGOI MOSFET channel using nano-beam electron diffraction (NBD). Mater. Sci. Eng. B 124, 143–147 (2005) (10.1016/j.mseb.2005.08.062) / Mater. Sci. Eng. B by K Usuda (2005)
  16. Li, J., Anjum, D., Hull, R., Xia, G. & Hoyt, J. L. Nanoscale stress analysis of strained-Si metal-oxide-semiconductor field-effect transistors by quantitative electron diffraction contrast imaging. Appl. Phys. Lett. 87, 222111 (2005) (10.1063/1.2135388) / Appl. Phys. Lett. by J Li (2005)
  17. Clément, L., Pantel, R., Kwakman, L. F. T. & Rouvière, J.-L. Strain measurements by convergent-beam electron diffraction: The importance of stress relaxation in lamella preparations. Appl. Phys. Lett. 85, 651–653 (2004) (10.1063/1.1774275) / Appl. Phys. Lett. by L Clément (2004)
  18. Houdellier, F., Roucau, C., Clément, L., Rouvière, J.-L. & Casanove, M.-J. Quantitative analysis of HOLZ line splitting in CBED patterns of epitaxially strained layers. Ultramicroscopy 106, 951–959 (2006) (10.1016/j.ultramic.2006.04.011) / Ultramicroscopy by F Houdellier (2006)
  19. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998) (10.1016/S0304-3991(98)00035-7) / Ultramicroscopy by MJ Hÿtch (1998)
  20. Hÿtch, M. J., Putaux, J.-L. & Pénisson, J.-M. Measurement of the displacement field around dislocations to 0.03 Å by electron microscopy. Nature 423, 270–273 (2003) (10.1038/nature01638) / Nature by MJ Hÿtch (2003)
  21. Johnson, C. L. et al. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nature Mater. 7, 120–124 (2008) (10.1038/nmat2083) / Nature Mater. by CL Johnson (2008)
  22. Hüe, F., Hÿtch, M. J., Bender, H., Houdellier, F. & Claverie, A. Direct mapping of strain in a strained-silicon transistor by high-resolution electron microscopy. Phys. Rev. Lett. 100, 156602 (2008) (10.1103/PhysRevLett.100.156602) / Phys. Rev. Lett. by F Hüe (2008)
  23. Treacy, M. M. J., Gibson, J. M. & Howie, A. On elastic relaxation and long wavelength microstructures in spinodally decomposed InxGa1–xAsyP1–y epitaxial layers. Phil. Mag. A 51, 389–417 (1985) (10.1080/01418618508237563) / Phil. Mag. A by MMJ Treacy (1985)
  24. Hÿtch, M. J. & Plamann, T. Imaging conditions for reliable measurement of displacement and strain from high-resolution electron microscope images. Ultramicroscopy 87, 199–212 (2001) (10.1016/S0304-3991(00)00099-1) / Ultramicroscopy by MJ Hÿtch (2001)
  25. Loo, R. et al. A new technique to fabricate ultra-shallow-junctions, combining in situ vapour HCl etching and in situ doped epitaxial SiGe re-growth. Appl. Surf. Sci. 224, 63–67 (2004) (10.1016/j.apsusc.2003.08.030) / Appl. Surf. Sci. by R Loo (2004)
  26. Hüe, F. et al. Calibration of projector lens distortions. J. Electron Microsc. (Tokyo) 54, 181–190 (2005) (10.1093/jmicro/dfi042) / J. Electron Microsc. (Tokyo) by F Hüe (2005)
  27. Yeo, Y. C. & Sun, J. S. Finite-element study of strain distribution in transistor with silicon-germanium source and drain regions. Appl. Phys. Lett. 86, 023103 (2005) (10.1063/1.1846152) / Appl. Phys. Lett. by YC Yeo (2005)
  28. Ishitani, T., Umemura, K., Ohnishi, T., Yaguchi, T. & Kamino, T. Improvements in performance of focused ion beam cross-sectioning: aspects of ion–sample interaction. J. Electron Microsc. 53, 443–449 (2004) (10.1093/jmicro/dfh078) / J. Electron Microsc. by T Ishitani (2004)
  29. Rau, W. D., Schwander, P., Baumann, F. H., Hoppner, W. & Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 82, 2614–2617 (1999) (10.1103/PhysRevLett.82.2614) / Phys. Rev. Lett. by WD Rau (1999)
  30. De Jong, N., Allioux, M., Oostveen, J. T., Teo, K. B. K. & Milne, W. I. Optical performance of carbon-nanotube electron sources. Phys. Rev. Lett. 94, 186807 (2005) (10.1103/PhysRevLett.94.186807) / Phys. Rev. Lett. by N De Jong (2005)
  31. Wang, Y. Y. et al. Off-axis electron holography with a dual-lens imaging system and its usefulness in 2-D potential mapping of semiconductor devices. Ultramicroscopy 101, 63–72 (2004) (10.1016/j.ultramic.2004.04.003) / Ultramicroscopy by YY Wang (2004)
  32. Harada, K., Akashi, T., Togawa, Y., Matsuda, T. & Tonomura, A. Optical system for double-biprism electron holography. J. Electron Microsc. 54, 19–27 (2005) (10.1093/jmicro/dfh098) / J. Electron Microsc. by K Harada (2005)
  33. Snoeck, E., Hartel, P., Mueller, H., Haider, M. & Tiemeijer, P. C. Using a CEOS-objective lens corrector as a pseudo Lorentz lens in a Tecnai F20 TEM. Proc. 16th Intl Microsc. Congress 2, 730 (Japanese Society of Microscopy, Sapporo, 2006) / Proc. 16th Intl Microsc. Congress by E Snoeck (2006)
  34. Huebner, K. H. H., Dewhirst, D. L., Smith, D. E. & Byrom, T. G. The Finite Element Method for Engineers (Wiley, New York, 2001) / The Finite Element Method for Engineers by KHH Huebner (2001)
  35. Christiansen, S., Albrecht, M., Strunk, H. P. & Maier, H. J. Strained state of Ge(Si) islands on Si: Finite element calculations and comparison to convergent beam electron-diffraction measurements. Appl. Phys. Lett. 64, 3617–3619 (1994) (10.1063/1.111217) / Appl. Phys. Lett. by S Christiansen (1994)
Dates
Type When
Created 17 years, 2 months ago (June 18, 2008, 1:45 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:16 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 6, 2025, 9:50 a.m.)
Issued 17 years, 2 months ago (June 1, 2008)
Published 17 years, 2 months ago (June 1, 2008)
Published Print 17 years, 2 months ago (June 1, 2008)
Funders 0

None

@article{H_tch_2008, title={Nanoscale holographic interferometry for strain measurements in electronic devices}, volume={453}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature07049}, DOI={10.1038/nature07049}, number={7198}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Hÿtch, Martin and Houdellier, Florent and Hüe, Florian and Snoeck, Etienne}, year={2008}, month=jun, pages={1086–1089} }