Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D. M., Bacskai, B. J., & Hyman, B. T. (2008). Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature, 451(7179), 720–724.

Authors 10
  1. Melanie Meyer-Luehmann (first)
  2. Tara L. Spires-Jones (additional)
  3. Claudia Prada (additional)
  4. Monica Garcia-Alloza (additional)
  5. Alix de Calignon (additional)
  6. Anete Rozkalne (additional)
  7. Jessica Koenigsknecht-Talboo (additional)
  8. David M. Holtzman (additional)
  9. Brian J. Bacskai (additional)
  10. Bradley T. Hyman (additional)
References 27 Referenced 833
  1. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002) (10.1126/science.1072994) / Science by J Hardy (2002)
  2. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307, 1282–1288 (2005) (10.1126/science.1105681) / Science by GB Stokin (2005)
  3. Jankowsky, J. L. et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Eng. 17, 157–165 (2001) (10.1016/S1389-0344(01)00067-3) / Biomol. Eng. by JL Jankowsky (2001)
  4. Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159–170 (2004) (10.1093/hmg/ddh019) / Hum. Mol. Genet. by JL Jankowsky (2004)
  5. Kawai, M., Kalaria, R. N., Harik, S. I. & Perry, G. The relationship of amyloid plaques to cerebral capillaries in Alzheimer’s disease. Am. J. Pathol. 137, 1435–1446 (1990) / Am. J. Pathol. by M Kawai (1990)
  6. Kumar-Singh, S. et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am. J. Pathol. 167, 527–543 (2005) (10.1016/S0002-9440(10)62995-1) / Am. J. Pathol. by S Kumar-Singh (2005)
  7. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996) (10.1126/science.274.5284.99) / Science by K Hsiao (1996)
  8. Hyman, B. T. et al. Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc. Natl Acad. Sci. USA 92, 3586–3590 (1995) (10.1073/pnas.92.8.3586) / Proc. Natl Acad. Sci. USA by BT Hyman (1995)
  9. Itagaki, S., McGeer, P. L., Akiyama, H., Zhu, S. & Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173–182 (1989) (10.1016/0165-5728(89)90115-X) / J. Neuroimmunol. by S Itagaki (1989)
  10. Frautschy, S. A. et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152, 307–317 (1998) / Am. J. Pathol. by SA Frautschy (1998)
  11. Combs, C. K., Karlo, J. C., Kao, S. C. & Landreth, G. E. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179–1188 (2001) (10.1523/JNEUROSCI.21-04-01179.2001) / J. Neurosci. by CK Combs (2001)
  12. Qin, S. et al. System Xc- and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-β peptide 1–40. J. Neurosci. 26, 3345–3356 (2006) (10.1523/JNEUROSCI.5186-05.2006) / J. Neurosci. by S Qin (2006)
  13. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999) (10.1038/22124) / Nature by D Schenk (1999)
  14. Nagele, R. G., Wegiel, J., Venkataraman, V., Imaki, H. & Wang, K. C. Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol. Aging 25, 663–674 (2004) (10.1016/j.neurobiolaging.2004.01.007) / Neurobiol. Aging by RG Nagele (2004)
  15. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49, 489–502 (2006) (10.1016/j.neuron.2006.01.022) / Neuron by AR Simard (2006)
  16. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995) (10.1038/373523a0) / Nature by D Games (1995)
  17. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000) (10.1128/MCB.20.11.4106-4114.2000) / Mol. Cell. Biol. by S Jung (2000)
  18. Bacskai, B. J. et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nature Med. 7, 369–372 (2001) (10.1038/85525) / Nature Med. by BJ Bacskai (2001)
  19. Geula, C. et al. Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nature Med. 4, 827–831 (1998) (10.1038/nm0798-827) / Nature Med. by C Geula (1998)
  20. Knowles, R. B. et al. Plaque-induced neurite abnormalities: implications for disruption of neural networks in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 96, 5274–5279 (1999) (10.1073/pnas.96.9.5274) / Proc. Natl Acad. Sci. USA by RB Knowles (1999)
  21. Le, R. et al. Plaque-induced abnormalities in neurite geometry in transgenic models of Alzheimer disease: implications for neural system disruption. J. Neuropathol. Exp. Neurol. 60, 753–758 (2001) (10.1093/jnen/60.8.753) / J. Neuropathol. Exp. Neurol. by R Le (2001)
  22. Jarrett, J. T. & Lansbury, P. T. Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993) (10.1016/0092-8674(93)90635-4) / Cell by JT Jarrett (1993)
  23. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006) (10.1126/science.1131864) / Science by M Meyer-Luehmann (2006)
  24. Walsh, D. M. et al. Naturally secreted oligomers of amyloid-β protein potently inhibit hippocampal long-term potentiation in vivo . Nature 416, 535–539 (2002) (10.1038/416535a) / Nature by DM Walsh (2002)
  25. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006) (10.1038/nature04533) / Nature by S Lesne (2006)
  26. Spires, T. L. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci. 25, 7278–7287 (2005) (10.1523/JNEUROSCI.1879-05.2005) / J. Neurosci. by TL Spires (2005)
  27. Klunk, W. E. et al. Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J. Neuropathol. Exp. Neurol. 61, 797–805 (2002) (10.1093/jnen/61.9.797) / J. Neuropathol. Exp. Neurol. by WE Klunk (2002)
Dates
Type When
Created 17 years, 6 months ago (Feb. 6, 2008, 1:08 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:13 p.m.)
Indexed 11 minutes ago (Sept. 2, 2025, 6:18 p.m.)
Issued 17 years, 7 months ago (Feb. 1, 2008)
Published 17 years, 7 months ago (Feb. 1, 2008)
Published Print 17 years, 7 months ago (Feb. 1, 2008)
Funders 0

None

@article{Meyer_Luehmann_2008, title={Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease}, volume={451}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature06616}, DOI={10.1038/nature06616}, number={7179}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Meyer-Luehmann, Melanie and Spires-Jones, Tara L. and Prada, Claudia and Garcia-Alloza, Monica and de Calignon, Alix and Rozkalne, Anete and Koenigsknecht-Talboo, Jessica and Holtzman, David M. and Bacskai, Brian J. and Hyman, Bradley T.}, year={2008}, month=feb, pages={720–724} }