Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Robinson, C. V., Sali, A., & Baumeister, W. (2007). The molecular sociology of the cell. Nature, 450(7172), 973–982.

Authors 3
  1. Carol V. Robinson (first)
  2. Andrej Sali (additional)
  3. Wolfgang Baumeister (additional)
References 100 Referenced 477
  1. Blundell, T. L. & Johnson, L. Protein Crystallography (Academic, New York, 1976). / Protein Crystallography by TL Blundell (1976)
  2. Wimberley, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000). (10.1038/35030006) / Nature by BT Wimberley (2000)
  3. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å. Science 289, 905–920 (2000). (10.1126/science.289.5481.905) / Science by N Ban (2000)
  4. Schluenzen, F. et al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102, 615–623 (2000). (10.1016/S0092-8674(00)00084-2) / Cell by F Schluenzen (2000)
  5. Malhotra, A. & Harvey, S. C. A quantitative model of the Escherichia coli 16S RNA in the 30S ribosomal subunit. J. Mol. Biol. 240, 308–340 (1994). (10.1006/jmbi.1994.1448) / J. Mol. Biol. by A Malhotra (1994)
  6. Alber, F., Kim, M. F. & Sali, A. Structural characterization of assemblies from overall shape and subcomplex compositions. Structure 13, 435–445 (2005). (10.1016/j.str.2005.01.013) / Structure by F Alber (2005)
  7. Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007). (10.1038/nature06404) / Nature by F Alber (2007)
  8. Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature 422, 216–225 (2003). (10.1038/nature01513) / Nature by A Sali (2003)
  9. Hernandez, H., Dziembowski, A., Taverner, T., Seraphin, B. & Robinson, C. V. Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep. 7, 605–610 (2006). (10.1038/sj.embor.7400702) / EMBO Rep. by H Hernandez (2006)
  10. Davis, F. P. et al. Protein complex compositions predicted by structural similarity. Nucleic Acids Res. 34, 2943–2952 (2006). (10.1093/nar/gkl353) / Nucleic Acids Res. by FP Davis (2006)
  11. van Dijk, A. D. et al. Modeling protein–protein complexes involved in the cytochrome c oxidase copper-delivery pathway. J. Proteome Res. 6, 1530–1539 (2007). (10.1021/pr060651f) / J. Proteome Res. by AD van Dijk (2007)
  12. Todd, A. E., Marsden, R. L., Thornton, J. M. & Orengo, C. A. Progress of structural genomics initiatives: an analysis of solved target structures. J. Mol. Biol. 348, 1235–1260 (2005). (10.1016/j.jmb.2005.03.037) / J. Mol. Biol. by AE Todd (2005)
  13. Alber, F., Eswar, N. & Sali, A. in Practical Bioinformatics 1950–1954 (Springer, Heidelberg, 2004). / Practical Bioinformatics by F Alber (2004)
  14. Sivasubramanian, A., Chao, G., Pressler, H. M., Wittrup, K. D. & Gray, J. J. Structural model of the mAb 806–EGFR complex using computational docking followed by computational and experimental mutagenesis. Structure 14, 401–414 (2006). (10.1016/j.str.2005.11.022) / Structure by A Sivasubramanian (2006)
  15. Rossmann, M. G., Morais, M. C., Leiman, P. G. & Zhang, W. Combining X-ray crystallography and electron microscopy. Structure 13, 355–362 (2005). (10.1016/j.str.2005.01.005) / Structure by MG Rossmann (2005)
  16. Fotin, A. et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432, 649–653 (2004). (10.1038/nature03078) / Nature by A Fotin (2004)
  17. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91, 457–466 (1997). (10.1016/S0092-8674(00)80432-8) / Cell by P Mitchell (1997)
  18. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998). (10.1016/S0092-8674(00)80929-0) / Cell by W Baumeister (1998)
  19. Lim, R. Y. & Fahrenkrog, B. The nuclear pore complex up close. Curr. Opin. Cell Biol. 18, 342–347 (2006). (10.1016/j.ceb.2006.03.006) / Curr. Opin. Cell Biol. by RY Lim (2006)
  20. Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007). (10.1038/nature06170) / Nature by M Beck (2007)
  21. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007). (10.1038/nature06405) / Nature by F Alber (2007)
  22. Meinhart, A. & Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430, 223–226 (2004). (10.1038/nature02679) / Nature by A Meinhart (2004)
  23. Liu, Q., Greimann, J. C. & Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223–1237 (2006). (10.1016/j.cell.2006.10.037) / Cell by Q Liu (2006)
  24. Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004). (10.1038/nature02250) / Nature by PF Egea (2004)
  25. Bonvin, A. M., Boelens, R. & Kaptein, R. NMR analysis of protein interactions. Curr. Opin. Chem. Biol. 9, 501–508 (2005). (10.1016/j.cbpa.2005.08.011) / Curr. Opin. Chem. Biol. by AM Bonvin (2005)
  26. Zuiderweg, E. R. Mapping protein–protein interactions in solution by NMR spectroscopy. Biochemistry 41, 1–7 (2002). (10.1021/bi011870b) / Biochemistry by ER Zuiderweg (2002)
  27. McCoy, M. A. & Wyss, D. F. Structures of protein–protein complexes are docked using only NMR restraints from residual dipolar coupling and chemical shift perturbations. J. Am. Chem. Soc. 124, 2104–2105 (2002). (10.1021/ja017242z) / J. Am. Chem. Soc. by MA McCoy (2002)
  28. Wuthrich, K. The way to NMR structures of proteins. Nature Struct. Biol. 8, 923–925 (2001). (10.1038/nsb1101-923) / Nature Struct. Biol. by K Wuthrich (2001)
  29. Rieping, W., Habeck, M. & Nilges, M. Inferential structure determination. Science 309, 303–306 (2005). (10.1126/science.1110428) / Science by W Rieping (2005)
  30. Vachette, P., Koch, M. H. & Svergun, D. I. Looking behind the beamstop: X-ray solution scattering studies of structure and conformational changes of biological macromolecules. Methods Enzymol. 374, 584–615 (2003). (10.1016/S0076-6879(03)74024-5) / Methods Enzymol. by P Vachette (2003)
  31. Nagar, B. & Kuriyan, J. SAXS and the working protein. Structure 13, 169–170 (2005). (10.1016/j.str.2005.01.001) / Structure by B Nagar (2005)
  32. Tidow, H. et al. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Proc. Natl Acad. Sci. USA 104, 12324–12329 (2007). (10.1073/pnas.0705069104) / Proc. Natl Acad. Sci. USA by H Tidow (2007)
  33. Grishaev, A., Wu, J., Trewhella, J. & Bax, A. Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. J. Am. Chem. Soc. 127, 16621–16628 (2005). (10.1021/ja054342m) / J. Am. Chem. Soc. by A Grishaev (2005)
  34. Rosenberg, O. S., Deindl, S., Sung, R. J., Nairn, A. C. & Kuriyan, J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123, 849–860 (2005). (10.1016/j.cell.2005.10.029) / Cell by OS Rosenberg (2005)
  35. Sondermann, H., Nagar, B., Bar-Sagi, D. & Kuriyan, J. Computational docking and solution X-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Proc. Natl Acad. Sci. USA 102, 16632–16637 (2005). (10.1073/pnas.0508315102) / Proc. Natl Acad. Sci. USA by H Sondermann (2005)
  36. Yamagata, A. & Tainer, J. A. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J. 26, 878–890 (2007). (10.1038/sj.emboj.7601544) / EMBO J. by A Yamagata (2007)
  37. Hainfeld, J. F. & Powell, R. D. New frontiers in gold labeling. J. Histochem. Cytochem. 48, 471–480 (2000). (10.1177/002215540004800404) / J. Histochem. Cytochem. by JF Hainfeld (2000)
  38. Pye, V. E. et al. Structural insights into the p97–Ufd1–Npl4 complex. Proc. Natl Acad. Sci. USA 104, 467–472 (2007). (10.1073/pnas.0603408104) / Proc. Natl Acad. Sci. USA by VE Pye (2007)
  39. Guan, J. Q., Almo, S. C., Reisler, E. & Chance, M. R. Structural reorganization of proteins revealed by radiolysis and mass spectrometry: G-actin solution structure is divalent cation dependent. Biochemistry 42, 11992–12000 (2003). (10.1021/bi034914k) / Biochemistry by JQ Guan (2003)
  40. Anand, G. S. et al. Identification of the protein kinase A regulatory RIα-catalytic subunit interface by amide H/2H exchange and protein docking. Proc. Natl Acad. Sci. USA 100, 13264–13269 (2003). (10.1073/pnas.2232255100) / Proc. Natl Acad. Sci. USA by GS Anand (2003)
  41. Lee, T. et al. Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol. Cell 14, 43–55 (2004). (10.1016/S1097-2765(04)00161-3) / Mol. Cell by T Lee (2004)
  42. Yan, Y. & Marriott, G. Analysis of protein interactions using fluorescence technologies. Curr. Opin. Chem. Biol. 7, 635–640 (2003). (10.1016/j.cbpa.2003.08.017) / Curr. Opin. Chem. Biol. by Y Yan (2003)
  43. Muller, E. G. et al. The organization of the core proteins of the yeast spindle pole body. Mol. Biol. Cell 16, 3341–3352 (2005). (10.1091/mbc.e05-03-0214) / Mol. Biol. Cell by EG Muller (2005)
  44. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006). (10.1038/nature04532) / Nature by AC Gavin (2006)
  45. Sharon, M., Taverner, T., Ambroggio, X. I., Deshaies, R. J. & Robinson, C. V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4, e267 (2006). (10.1371/journal.pbio.0040267) / PLoS Biol. by M Sharon (2006)
  46. Parrish, J. R., Gulyas, K. D. & Finley, R. L. Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol. 17, 387–393 (2006). (10.1016/j.copbio.2006.06.006) / Curr. Opin. Biotechnol. by JR Parrish (2006)
  47. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae . Nature 403, 623–627 (2000). (10.1038/35001009) / Nature by P Uetz (2000)
  48. Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I. & Stefan, E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nature Rev. Drug Discov. 6, 569–582 (2007). (10.1038/nrd2311) / Nature Rev. Drug Discov. by SW Michnick (2007)
  49. Landgraf, C. et al. Protein interaction networks by proteome peptide scanning. PLoS Biol. 2, e14 (2004). (10.1371/journal.pbio.0020014) / PLoS Biol. by C Landgraf (2004)
  50. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000). (10.1126/science.289.5485.1760) / Science by G MacBeath (2000)
  51. Piehler, J. New methodologies for measuring protein interactions in vivo and in vitro . Curr. Opin. Struct. Biol. 15, 4–14 (2005). (10.1016/j.sbi.2005.01.008) / Curr. Opin. Struct. Biol. by J Piehler (2005)
  52. Collins, S. R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007). (10.1038/nature05649) / Nature by SR Collins (2007)
  53. Krogan, N. J., Cagney, G., Haiyuan, Y., Zhong, G. & Guo, X. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae . Nature 440, 637–643 (2006). (10.1038/nature04670) / Nature by NJ Krogan (2006)
  54. Collins, S. R. et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae . Mol. Cell. Proteomics 6, 439–450 (2007). (10.1074/mcp.M600381-MCP200) / Mol. Cell. Proteomics by SR Collins (2007)
  55. Bauer, A. & Kuster, B. Affinity purification — mass spectrometry. Powerful tools for the characterization of protein complexes. Eur. J. Biochem. 270, 570–578 (2003). (10.1046/j.1432-1033.2003.03428.x) / Eur. J. Biochem. by A Bauer (2003)
  56. Rappas, M. et al. Structural insights into the activity of enhancer-binding proteins. Science 307, 1972–1975 (2005). (10.1126/science.1105932) / Science by M Rappas (2005)
  57. Poliakov, A. et al. Macromolecular mass spectrometry and electron microscopy as complementary tools for investigation of the heterogeneity of bacteriophage portal assemblies. J. Struct. Biol. 157, 371–383 (2007). (10.1016/j.jsb.2006.09.003) / J. Struct. Biol. by A Poliakov (2007)
  58. Hernandez, H. & Robinson, C. V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protoc. 2, 715–726 (2007). (10.1038/nprot.2007.73) / Nature Protoc. by H Hernandez (2007)
  59. Lorentzen, E. et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nature Struct. Mol. Biol. 12, 575–581 (2005). (10.1038/nsmb952) / Nature Struct. Mol. Biol. by E Lorentzen (2005)
  60. Buttner, K., Wenig, K. & Hopfner, K. P. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol. Cell 20, 461–471 (2005). (10.1016/j.molcel.2005.10.018) / Mol. Cell by K Buttner (2005)
  61. Aloy, P. et al. Structure-based assembly of protein complexes in yeast. Science 303, 2026–2029 (2004). (10.1126/science.1092645) / Science by P Aloy (2004)
  62. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999). (10.1146/annurev.biochem.68.1.1015) / Annu. Rev. Biochem. by D Voges (1999)
  63. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997). (10.1038/386463a0) / Nature by M Groll (1997)
  64. Sprangers, R. & Kay, L. E. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618–622 (2007). (10.1038/nature05512) / Nature by R Sprangers (2007)
  65. Hanna, J. & Finley, D. A proteasome for all occasions. FEBS Lett. 581, 2854–2861 (2007). (10.1016/j.febslet.2007.03.053) / FEBS Lett. by J Hanna (2007)
  66. Scheres, S. H. W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4, 27–29 (2007). (10.1038/nmeth992) / Nature Methods by SHW Scheres (2007)
  67. Nickell, S. et al. Automated cryoelectron microscopy of 'single particles' applied to the 26S proteasome. FEBS Lett. 581, 2751–2756 (2007). (10.1016/j.febslet.2007.05.028) / FEBS Lett. by S Nickell (2007)
  68. Davy, A. et al. A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2, 821–828 (2001). (10.1093/embo-reports/kve184) / EMBO Rep. by A Davy (2001)
  69. Ferrell, K., Wilkinson, C. R., Dubiel, W. & Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 25, 83–88 (2000). (10.1016/S0968-0004(99)01529-7) / Trends Biochem. Sci. by K Ferrell (2000)
  70. Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell 69, 1133–1141 (1992). (10.1016/0092-8674(92)90635-P) / Cell by JE Hinshaw (1992)
  71. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000). (10.1083/jcb.148.4.635) / J. Cell Biol. by MP Rout (2000)
  72. Devos, D. et al. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl Acad. Sci. USA 103, 2172–2177 (2006). (10.1073/pnas.0506345103) / Proc. Natl Acad. Sci. USA by D Devos (2006)
  73. Koster, A. J. et al. Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120, 276–308 (1997). (10.1006/jsbi.1997.3933) / J. Struct. Biol. by AJ Koster (1997)
  74. Nickell, S., Kofler, C., Leis, A. P. & Baumeister, W. A visual approach to proteomics. Nature Rev. Mol. Cell. Biol. 7, 225–230 (2006). (10.1038/nrm1861) / Nature Rev. Mol. Cell. Biol. by S Nickell (2006)
  75. Baumeister, W. From proteomic inventory to architecture. FEBS Lett. 579, 933–937 (2005). (10.1016/j.febslet.2004.10.102) / FEBS Lett. by W Baumeister (2005)
  76. Benesch, J. L., Ruotolo, B. T., Simmons, D. A. & Robinson, C. V. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev. 107, 3544–3567 (2007). (10.1021/cr068289b) / Chem. Rev. by JL Benesch (2007)
  77. Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995). (10.1126/science.7725097) / Science by J Lowe (1995)
  78. Unno, M. et al. The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10, 609–618 (2002). (10.1016/S0969-2126(02)00748-7) / Structure by M Unno (2002)
  79. Kwon, Y. D., Nagy, I., Adams, P. D., Baumeister, W. & Jap, B. K. Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J. Mol. Biol. 335, 233–245 (2004). (10.1016/j.jmb.2003.08.029) / J. Mol. Biol. by YD Kwon (2004)
  80. Ortiz, J. O., Forster, F., Kurner, J., Linaroudis, A. A. & Baumeister, W. Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. J. Struct. Biol. 156, 334–341 (2006). (10.1016/j.jsb.2006.04.014) / J. Struct. Biol. by JO Ortiz (2006)
  81. Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100, 537–549 (2000). (10.1016/S0092-8674(00)80690-X) / Cell by IS Gabashvili (2000)
  82. Sharon, M. & Robinson, C. V. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 76, 167–193 (2007). (10.1146/annurev.biochem.76.061005.090816) / Annu. Rev. Biochem. by M Sharon (2007)
  83. Ilag, L. L. et al. Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proc. Natl Acad Sci. USA 102, 8192–8197 (2005). (10.1073/pnas.0502193102) / Proc. Natl Acad Sci. USA by LL Ilag (2005)
  84. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003). (10.1038/nature01511) / Nature by R Aebersold (2003)
  85. Synowsky, S. A., van den Heuvel, R. H., Mohammed, S., Pijnappel, P. W. & Heck, A. J. Probing genuine strong interactions and post-translational modifications in the heterogeneous yeast exosome protein complex. Mol. Cell. Proteomics 5, 1581–1592 (2006). (10.1074/mcp.M600043-MCP200) / Mol. Cell. Proteomics by SA Synowsky (2006)
  86. Back, J. W., de Jong, L., Muijsers, A. O. & de Koster, C. G. Chemical cross-linking and mass spectrometry for protein structural modeling. J. Mol. Biol. 331, 303–313 (2003). (10.1016/S0022-2836(03)00721-6) / J. Mol. Biol. by JW Back (2003)
  87. Vasilescu, J. & Figeys, D. Mapping protein–protein interactions by mass spectrometry. Curr. Opin. Biotechnol. 17, 394–399 (2006). (10.1016/j.copbio.2006.06.008) / Curr. Opin. Biotechnol. by J Vasilescu (2006)
  88. von Helden, G., Wyttenbach, T. & Bowers, M. T. Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science 267, 1483–1485 (1995). (10.1126/science.267.5203.1483) / Science by G von Helden (1995)
  89. Ruotolo, B. T. et al. Evidence for macromolecular protein rings in the absence of bulk water. Science 310, 1658–1661 (2005). (10.1126/science.1120177) / Science by BT Ruotolo (2005)
  90. Ruotolo, B. T. et al. Ion mobility–mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew. Chem. Int. Ed. Engl. 46, 8001–8004 (2007). (10.1002/anie.200702161) / Angew. Chem. Int. Ed. Engl. by BT Ruotolo (2007)
  91. Henderson, R. Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys. 37, 3–13 (2004). (10.1017/S0033583504003920) / Q. Rev. Biophys. by R Henderson (2004)
  92. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005). (10.1016/j.jsb.2005.03.010) / J. Struct. Biol. by C Suloway (2005)
  93. Johnson, J. E. & Chiu, W. DNA packaging and delivery machines in tailed bacteriophages. Curr. Opin. Struct. Biol. 17, 237–243 (2007). (10.1016/j.sbi.2007.03.011) / Curr. Opin. Struct. Biol. by JE Johnson (2007)
  94. Taylor, D. J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J. 26, 2421–2431 (2007). (10.1038/sj.emboj.7601677) / EMBO J. by DJ Taylor (2007)
  95. Vaughan, C. K. et al. Structure of an Hsp90–Cdc37–Cdk4 complex. Mol. Cell 23, 697–707 (2006). (10.1016/j.molcel.2006.07.016) / Mol. Cell by CK Vaughan (2006)
  96. Woodhead, J. L. et al. Atomic model of a myosin filament in the relaxed state. Nature 436, 1195–1199 (2005). (10.1038/nature03920) / Nature by JL Woodhead (2005)
  97. Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005). (10.1038/nature03606) / Nature by HW Wang (2005)
  98. Stark, H. & Luhrmann, R. Cryo-electron microscopy of spliceosomal components. Annu. Rev. Biophys. Biomol. Struct. 35, 435–457 (2006). (10.1146/annurev.biophys.35.040405.101953) / Annu. Rev. Biophys. Biomol. Struct. by H Stark (2006)
  99. Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007). (10.1016/j.cell.2007.05.036) / Cell by S Fath (2007)
  100. Mitra, K. & Frank, J. Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps. Annu. Rev. Biophys. Biomol. Struct. 35, 299–317 (2006). (10.1146/annurev.biophys.35.040405.101950) / Annu. Rev. Biophys. Biomol. Struct. by K Mitra (2006)
Dates
Type When
Created 17 years, 8 months ago (Dec. 17, 2007, 6:08 a.m.)
Deposited 3 years, 4 months ago (April 19, 2022, 12:25 p.m.)
Indexed 18 hours, 8 minutes ago (Aug. 20, 2025, 9:08 a.m.)
Issued 17 years, 8 months ago (Dec. 12, 2007)
Published 17 years, 8 months ago (Dec. 12, 2007)
Published Online 17 years, 8 months ago (Dec. 12, 2007)
Published Print 17 years, 8 months ago (Dec. 13, 2007)
Funders 0

None

@article{Robinson_2007, title={The molecular sociology of the cell}, volume={450}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature06523}, DOI={10.1038/nature06523}, number={7172}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Robinson, Carol V. and Sali, Andrej and Baumeister, Wolfgang}, year={2007}, month=dec, pages={973–982} }