Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Vassylyev, D. G., Vassylyeva, M. N., Perederina, A., Tahirov, T. H., & Artsimovitch, I. (2007). Structural basis for transcription elongation by bacterial RNA polymerase. Nature, 448(7150), 157–162.

Authors 5
  1. Dmitry G. Vassylyev (first)
  2. Marina N. Vassylyeva (additional)
  3. Anna Perederina (additional)
  4. Tahir H. Tahirov (additional)
  5. Irina Artsimovitch (additional)
References 51 Referenced 371
  1. Archambault, J. & Friesen, J. D. Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol. Rev. 57, 703–724 (1993) (10.1128/MMBR.57.3.703-724.1993) / Microbiol. Rev. by J Archambault (1993)
  2. Cramer, P. Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. 12, 89–97 (2002) (10.1016/S0959-440X(02)00294-4) / Curr. Opin. Struct. Biol. by P Cramer (2002)
  3. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001) (10.1126/science.1059495) / Science by AL Gnatt (2001)
  4. Kettenberger, H., Armache, K. J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004) (10.1016/j.molcel.2004.11.040) / Mol. Cell by H Kettenberger (2004)
  5. Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D. & Kornberg, R. D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941–954 (2006) (10.1016/j.cell.2006.11.023) / Cell by D Wang (2006)
  6. Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481–489 (2004) (10.1016/j.cell.2004.10.016) / Cell by KD Westover (2004)
  7. Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303, 1014–1016 (2004) (10.1126/science.1090839) / Science by KD Westover (2004)
  8. Vassylyev, D. G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417, 712–719 (2002) (10.1038/nature752) / Nature by DG Vassylyev (2002)
  9. Mooney, R. A., Darst, S. A. & Landick, R. Sigma and RNA polymerase: an on-again, off-again relationship? Mol. Cell 20, 335–345 (2005) (10.1016/j.molcel.2005.10.015) / Mol. Cell by RA Mooney (2005)
  10. Kapanidis, A. N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006) (10.1126/science.1131399) / Science by AN Kapanidis (2006)
  11. Revyakin, A., Liu, C., Ebright, R. H. & Strick, T. R. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314, 1139–1143 (2006) (10.1126/science.1131398) / Science by A Revyakin (2006)
  12. Temiakov, D. et al. Structural basis for substrate selection by t7 RNA polymerase. Cell 116, 381–391 (2004) (10.1016/S0092-8674(04)00059-5) / Cell by D Temiakov (2004)
  13. Yin, Y. W. & Steitz, T. A. The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116, 393–404 (2004) (10.1016/S0092-8674(04)00120-5) / Cell by YW Yin (2004)
  14. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999) (10.1016/S0092-8674(00)81515-9) / Cell by G Zhang (1999)
  15. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 ångstrom resolution. Science 292, 1863–1876 (2001) (10.1126/science.1059493) / Science by P Cramer (2001)
  16. Tahirov, T. H. et al. Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution. Nature 420, 43–50 (2002) (10.1038/nature01129) / Nature by TH Tahirov (2002)
  17. Yin, Y. W. & Steitz, T. A. Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298, 1387–1395 (2002) (10.1126/science.1077464) / Science by YW Yin (2002)
  18. Korzheva, N. et al. A structural model of transcription elongation. Science 289, 619–625 (2000) (10.1126/science.289.5479.619) / Science by N Korzheva (2000)
  19. Vassylyev, D. G. et al. Structural basis for substrate loading in bacterial RNA polymerase. Nature doi:10.1038/nature05931 (this issue). (10.1038/nature05931)
  20. Naryshkin, N., Revyakin, A., Kim, Y., Mekler, V. & Ebright, R. H. Structural organization of the RNA polymerase-promoter open complex. Cell 101, 601–611 (2000) (10.1016/S0092-8674(00)80872-7) / Cell by N Naryshkin (2000)
  21. Kuznedelov, K., Korzheva, N., Mustaev, A. & Severinov, K. Structure-based analysis of RNA polymerase function: the largest subunit’s rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA–DNA hybrid length. EMBO J. 21, 1369–1378 (2002) (10.1093/emboj/21.6.1369) / EMBO J. by K Kuznedelov (2002)
  22. Cheetham, G. M. & Steitz, T. A. Structure of a transcribing T7 RNA polymerase initiation complex. Science 286, 2305–2309 (1999) (10.1126/science.286.5448.2305) / Science by GM Cheetham (1999)
  23. Jiang, M., Ma, N., Vassylyev, D. G. & McAllister, W. T. RNA displacement and resolution of the transcription bubble during transcription by T7 RNA polymerase. Mol. Cell 15, 777–788 (2004) (10.1016/j.molcel.2004.07.019) / Mol. Cell by M Jiang (2004)
  24. Foster, J. E., Holmes, S. F. & Erie, D. A. Allosteric binding of nucleoside triphosphates to RNA polymerase regulates transcription elongation. Cell 106, 243–252 (2001) (10.1016/S0092-8674(01)00420-2) / Cell by JE Foster (2001)
  25. Gong, X. Q., Zhang, C., Feig, M. & Burton, Z. F. Dynamic error correction and regulation of downstream bubble opening by human RNA polymerase II. Mol. Cell 18, 461–470 (2005) (10.1016/j.molcel.2005.04.011) / Mol. Cell by XQ Gong (2005)
  26. Landick, R. NTP-entry routes in multi-subunit RNA polymerases. Trends Biochem. Sci. 30, 651–654 (2005) (10.1016/j.tibs.2005.10.001) / Trends Biochem. Sci. by R Landick (2005)
  27. Huang, J., Brieba, L. G. & Sousa, R. Misincorporation by wild-type and mutant T7 RNA polymerases: identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation. Biochemistry 39, 11571–11580 (2000) (10.1021/bi000579d) / Biochemistry by J Huang (2000)
  28. Naryshkina, T., Kuznedelov, K. & Severinov, K. The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid. J. Mol. Biol. 361, 634–643 (2006) (10.1016/j.jmb.2006.05.034) / J. Mol. Biol. by T Naryshkina (2006)
  29. Toulokhonov, I. & Landick, R. The role of the lid element in transcription by E. coli RNA polymerase. J. Mol. Biol. 361, 644–658 (2006) (10.1016/j.jmb.2006.06.071) / J. Mol. Biol. by I Toulokhonov (2006)
  30. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005) (10.1038/nature04268) / Nature by EA Abbondanzieri (2005)
  31. Artsimovitch, I. & Landick, R. Interaction of a nascent RNA structure with RNA polymerase is required for hairpin-dependent transcriptional pausing but not for transcript release. Genes Dev. 12, 3110–3122 (1998) (10.1101/gad.12.19.3110) / Genes Dev. by I Artsimovitch (1998)
  32. Yarnell, W. S. & Roberts, J. W. Mechanism of intrinsic transcription termination and antitermination. Science 284, 611–615 (1999) (10.1126/science.284.5414.611) / Science by WS Yarnell (1999)
  33. Santangelo, T. J. & Roberts, J. W. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol. Cell 14, 117–126 (2004) (10.1016/S1097-2765(04)00154-6) / Mol. Cell by TJ Santangelo (2004)
  34. Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999) (10.1016/S1097-2765(00)80477-3) / Mol. Cell by I Gusarov (1999)
  35. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D Biol. Crystallogr. 57, 1367–1372 (2001) (10.1107/S0907444901012422) / Acta Crystallogr. D Biol. Crystallogr. by J Navaza (2001)
  36. Kashkina, E. et al. Elongation complexes of Thermus thermophilus RNA polymerase that possess distinct translocation conformations. Nucleic Acids Res. 34, 4036–4045 (2006) (10.1093/nar/gkl559) / Nucleic Acids Res. by E Kashkina (2006)
  37. Vassylyeva, M. N. et al. Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus. Acta Crystallogr. D Biol. Crystallogr. 58, 1497–1500 (2002) (10.1107/S0907444902011770) / Acta Crystallogr. D Biol. Crystallogr. by MN Vassylyeva (2002)
  38. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998) (10.1107/S0907444998003254) / Acta Crystallogr. D Biol. Crystallogr. by AT Brunger (1998)
  39. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991) (10.1107/S0108767390010224) / Acta Crystallogr. A by TA Jones (1991)
  40. Merrit, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997) (10.1016/S0076-6879(97)77028-9) / Methods Enzymol. by EA Merrit (1997)
  41. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991) (10.1107/S0021889891004399) / J. Appl. Cryst. by PJ Kraulis (1991)
  42. Esnouf, R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D 55, 938–940 (1999) (10.1107/S0907444998017363) / Acta Crystallogr D by RM Esnouf (1999)
  43. Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr. D Biol. Crystallogr. 61, 850–855 (2005) (10.1107/S0907444905007894) / Acta Crystallogr. D Biol. Crystallogr. by PV Afonine (2005)
  44. Baker, D., Bystroff, C., Fletterick, R. J. & Agard, D. A. PRISM: topologically constrained phased refinement for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 49, 429–439 (1993) (10.1107/S0907444993004032) / Acta Crystallogr. D Biol. Crystallogr. by D Baker (1993)
  45. Vassylyev, D. G. et al. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell 83, 773–782 (1995) (10.1016/0092-8674(95)90190-6) / Cell by DG Vassylyev (1995)
  46. Matthews, B. W. & Czerwinski, E. W. Local scaling: a method to reduce systematic errors in isomorphous replacement and anomalous scattering measurements. Acta Crystallogr. A 31, 480–497 (1975) (10.1107/S0567739475001040) / Acta Crystallogr. A by BW Matthews (1975)
  47. Wang, J. H. et al. Structure of a functional fragment of VCAM-1 refined at 1.9 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 52, 369–379 (1996) (10.1107/S0907444995012352) / Acta Crystallogr. D Biol. Crystallogr. by JH Wang (1996)
  48. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002) (10.1107/S0907444902011678) / Acta Crystallogr. D Biol. Crystallogr. by TR Schneider (2002)
  49. Weeks, C. M. & Miller, R. Optimizing Shake-and-Bake for proteins. Acta Crystallogr. D Biol. Crystallogr. 55, 492–500 (1999) (10.1107/S0907444998012633) / Acta Crystallogr. D Biol. Crystallogr. by CM Weeks (1999)
  50. Yeates, T. D. Detecting and overcoming crystal twinning. Methods Enzymol. 276, 344–358 (1997) (10.1016/S0076-6879(97)76068-3) / Methods Enzymol. by TD Yeates (1997)
  51. Chlenov, M. et al. Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase β′ subunit. J. Mol. Biol. 353, 138–154 (2005) (10.1016/j.jmb.2005.07.073) / J. Mol. Biol. by M Chlenov (2005)
Dates
Type When
Created 18 years, 2 months ago (June 20, 2007, 1:13 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:05 p.m.)
Indexed 1 week, 1 day ago (Aug. 26, 2025, 2:47 a.m.)
Issued 18 years, 2 months ago (June 20, 2007)
Published 18 years, 2 months ago (June 20, 2007)
Published Online 18 years, 2 months ago (June 20, 2007)
Published Print 18 years, 2 months ago (July 1, 2007)
Funders 0

None

@article{Vassylyev_2007, title={Structural basis for transcription elongation by bacterial RNA polymerase}, volume={448}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature05932}, DOI={10.1038/nature05932}, number={7150}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Vassylyev, Dmitry G. and Vassylyeva, Marina N. and Perederina, Anna and Tahirov, Tahir H. and Artsimovitch, Irina}, year={2007}, month=jun, pages={157–162} }