Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
49
Referenced
328
-
Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997)
(
10.1016/S0092-8674(00)80213-5
) / Cell by MS Brown (1997) -
Mattson, M. P. Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639 (2004)
(
10.1038/nature02621
) / Nature by MP Mattson (2004) -
Sakai, J. et al. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85, 1037–1046 (1996)
(
10.1016/S0092-8674(00)81304-5
) / Cell by J Sakai (1996) -
Rawson, R. B. et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57 (1997)
(
10.1016/S1097-2765(00)80006-4
) / Mol. Cell by RB Rawson (1997) -
Haass, C. Take five—BACE and the γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J. 23, 483–488 (2004)
(
10.1038/sj.emboj.7600061
) / EMBO J. by C Haass (2004) -
Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377, 351–354 (1995)
(
10.1038/377351a0
) / Nature by D Levitan (1995) -
De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999)
(
10.1038/19083
) / Nature by B De Strooper (1999) -
Rudner, D. Z., Fawcett, P. & Losick, R. A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl Acad. Sci. USA 96, 14765–14770 (1999)
(
10.1073/pnas.96.26.14765
) / Proc. Natl Acad. Sci. USA by DZ Rudner (1999) -
Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K. & Martoglio, B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 2215–2218 (2002)
(
10.1126/science.1070925
) / Science by A Weihofen (2002) -
Fluhrer, R. et al. A γ-secretase-like intramembrane cleavage of TNFα by the GxGD aspartyl protease SPPL2b. Nature Cell Biol. 8, 894–896 (2006)
(
10.1038/ncb1450
) / Nature Cell Biol. by R Fluhrer (2006) -
Friedmann, E. et al. SPPL2a and SPPL2b promote intramembrane proteolysis of TNFα in activated dendritic cells to trigger IL-12 production. Nature Cell Biol. 8, 843–848 (2006)
(
10.1038/ncb1440
) / Nature Cell Biol. by E Friedmann (2006) -
Urban, S., Lee, J. R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182 (2001)
(
10.1016/S0092-8674(01)00525-6
) / Cell by S Urban (2001) -
Gallio, M., Sturgill, G., Rather, P. & Kylsten, P. A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc. Natl Acad. Sci. USA 99, 12208–12213 (2002)
(
10.1073/pnas.192138799
) / Proc. Natl Acad. Sci. USA by M Gallio (2002) -
Wasserman, J. D., Urban, S. & Freeman, M. A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev. 14, 1651–1663 (2000)
(
10.1101/gad.14.13.1651
) / Genes Dev. by JD Wasserman (2000) -
Koonin, E. V. et al. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19 (2003)
(
10.1186/gb-2003-4-3-r19
) / Genome Biol. by EV Koonin (2003) -
Urban, S., Schlieper, D. & Freeman, M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507–1512 (2002)
(
10.1016/S0960-9822(02)01092-8
) / Curr. Biol. by S Urban (2002) -
Sturtevant, M. A., Roark, M. & Bier, E. The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev. 7, 961–973 (1993)
(
10.1101/gad.7.6.961
) / Genes Dev. by MA Sturtevant (1993) -
McQuibban, G. A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541 (2003)
(
10.1038/nature01633
) / Nature by GA McQuibban (2003) -
Cipolat, S. et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175 (2006)
(
10.1016/j.cell.2006.06.021
) / Cell by S Cipolat (2006) -
Brossier, F., Jewett, T. J., Sibley, L. D. & Urban, S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc. Natl Acad. Sci. USA 102, 4146–4151 (2005)
(
10.1073/pnas.0407918102
) / Proc. Natl Acad. Sci. USA by F Brossier (2005) -
Maegawa, S., Ito, K. & Akiyama, Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543–13552 (2005)
(
10.1021/bi051363k
) / Biochemistry by S Maegawa (2005) -
Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000)
(
10.1016/S0092-8674(00)80675-3
) / Cell by MS Brown (2000) -
Wolfe, M. S. & Kopan, R. Intramembrane proteolysis: theme and variations. Science 305, 1119–1123 (2004)
(
10.1126/science.1096187
) / Science by MS Wolfe (2004) -
Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 (1999)
(
10.1038/19077
) / Nature by MS Wolfe (1999) -
Daley, D. O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005)
(
10.1126/science.1109730
) / Science by DO Daley (2005) -
Urban, S. & Wolfe, M. S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl Acad. Sci. USA 102, 1883–1888 (2005)
(
10.1073/pnas.0408306102
) / Proc. Natl Acad. Sci. USA by S Urban (2005) -
Lemberg, M. K. et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464–472 (2005)
(
10.1038/sj.emboj.7600537
) / EMBO J. by MK Lemberg (2005) -
Russ, W. P. & Engelman, D. M. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919 (2000)
(
10.1006/jmbi.1999.3489
) / J. Mol. Biol. by WP Russ (2000) -
Cleland, W. W., Frey, P. A. & Gerlt, J. A. The low barrier hydrogen bond in enzymatic catalysis. J. Biol. Chem. 273, 25529–25532 (1998)
(
10.1074/jbc.273.40.25529
) / J. Biol. Chem. by WW Cleland (1998) -
Wei, Y. et al. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nature Struct. Biol. 2, 218–223 (1995)
(
10.1038/nsb0395-218
) / Nature Struct. Biol. by Y Wei (1995) -
Zhou, G. W., Guo, J., Huang, W., Fletterick, R. J. & Scanlan, T. S. Crystal structure of a catalytic antibody with a serine protease active site. Science 265, 1059–1064 (1994)
(
10.1126/science.8066444
) / Science by GW Zhou (1994) -
Paetzel, M., Dalbey, R. E. & Strynadka, N. C. Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor. Nature 396, 186–190 (1998)
(
10.1038/24196
) / Nature by M Paetzel (1998) -
Tjalsma, H. et al. Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis.. J. Biol. Chem. 275, 25102–25108 (2000)
(
10.1074/jbc.M002676200
) / J. Biol. Chem. by H Tjalsma (2000) - Fersht, A. Structure and Mechanism in Protein Science: a Guide to Enzyme Catalysis and Protein Folding (W.H. Freeman, New York, 1999)
-
Urban, S. & Freeman, M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell 11, 1425–1434 (2003)
(
10.1016/S1097-2765(03)00181-3
) / Mol. Cell by S Urban (2003) -
Ye, J., Dave, U. P., Grishin, N. V., Goldstein, J. L. & Brown, M. S. Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Proc. Natl Acad. Sci. USA 97, 5123–5128 (2000)
(
10.1073/pnas.97.10.5123
) / Proc. Natl Acad. Sci. USA by J Ye (2000) -
Lazarov, V. K. et al. Electron microscopic structure of purified, active γ-secretase reveals an aqueous intramembrane chamber and two pores. Proc. Natl Acad. Sci. USA 103, 6889–6894 (2006)
(
10.1073/pnas.0602321103
) / Proc. Natl Acad. Sci. USA by VK Lazarov (2006) -
Li, X. & Greenwald, I. Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17, 101510–101521 (1996)
(
10.1016/S0896-6273(00)80231-7
) / Neuron by X Li (1996) -
Li, X. & Greenwald, I. Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc. Natl Acad. Sci. USA 95, 7109–7114 (1998)
(
10.1073/pnas.95.12.7109
) / Proc. Natl Acad. Sci. USA by X Li (1998) -
Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
(
10.1016/S0076-6879(97)76066-X
) / Methods Enzymol. by Z Otwinowski (1997) -
Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Crystallogr. 37, 843–844 (2004)
(
10.1107/S0021889804018047
) / J. Appl. Crystallogr. by T Pape (2004) - Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
-
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
(
10.1107/S0108767390010224
) / Acta Crystallogr. A by TA Jones (1991) -
Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
(
10.1107/S0907444998003254
) / Acta Crystallogr. D by AT Brünger (1998) -
Opitz, C. et al. Intramembrane cleavage of microneme proteins at the surface of the apicomplexan parasite Toxoplasma gondii. EMBO J. 21, 1577–1585 (2002)
(
10.1093/emboj/21.7.1577
) / EMBO J. by C Opitz (2002) -
Zhou, X. W., Blackman, M. J., Howell, S. A. & Carruthers, V. B. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol. Cell. Proteomics 3, 565–576 (2004)
(
10.1074/mcp.M300123-MCP200
) / Mol. Cell. Proteomics by XW Zhou (2004) -
Kraulis, P. J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)
(
10.1107/S0021889891004399
) / J. Appl. Crystallogr. by PJ Kraulis (1991) -
Merritt, E. A. & Murphy, M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994)
(
10.1107/S0907444994006396
) / Acta Crystallogr. D by EA Merritt (1994) -
Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991)
(
10.1002/prot.340110407
) / Proteins Struct. Funct. Genet. by A Nicholls (1991)
Dates
Type | When |
---|---|
Created | 18 years, 10 months ago (Oct. 18, 2006, 6:38 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 1:59 p.m.) |
Indexed | 3 days, 14 hours ago (Aug. 20, 2025, 8:52 a.m.) |
Issued | 18 years, 10 months ago (Oct. 11, 2006) |
Published | 18 years, 10 months ago (Oct. 11, 2006) |
Published Online | 18 years, 10 months ago (Oct. 11, 2006) |
Published Print | 18 years, 9 months ago (Nov. 1, 2006) |
@article{Wang_2006, title={Crystal structure of a rhomboid family intramembrane protease}, volume={444}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature05255}, DOI={10.1038/nature05255}, number={7116}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Wang, Yongcheng and Zhang, Yingjiu and Ha, Ya}, year={2006}, month=oct, pages={179–180} }