Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Kaiser, C. M., Chang, H.-C., Agashe, V. R., Lakshmipathy, S. K., Etchells, S. A., Hayer-Hartl, M., Hartl, F. U., & Barral, J. M. (2006). Real-time observation of trigger factor function on translating ribosomes. Nature, 444(7118), 455–460.

Authors 8
  1. Christian M. Kaiser (first)
  2. Hung-Chun Chang (additional)
  3. Vishwas R. Agashe (additional)
  4. Sathish K. Lakshmipathy (additional)
  5. Stephanie A. Etchells (additional)
  6. Manajit Hayer-Hartl (additional)
  7. F. Ulrich Hartl (additional)
  8. José M. Barral (additional)
References 44 Referenced 189
  1. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001) (10.1146/annurev.biochem.70.1.603) / Annu. Rev. Biochem. by J Frydman (2001)
  2. Young, J. C., Agashe, V. R., Siegers, K. & Hartl, F. U. Pathways of chaperone-mediated protein folding in the cytosol. Nature Rev. Mol. Cell Biol. 5, 781–791 (2004) (10.1038/nrm1492) / Nature Rev. Mol. Cell Biol. by JC Young (2004)
  3. Deuerling, E. & Bukau, B. Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit. Rev. Biochem. Mol. Biol. 39, 261–277 (2004) (10.1080/10409230490892496) / Crit. Rev. Biochem. Mol. Biol. by E Deuerling (2004)
  4. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002) (10.1038/nature01047) / Nature by G Kramer (2002)
  5. Schlunzen, F. et al. The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure (Camb.) 13, 1685–1694 (2005) (10.1016/j.str.2005.08.007) / Structure (Camb.) by F Schlunzen (2005)
  6. Baram, D. et al. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc. Natl Acad. Sci. USA 102, 12017–12022 (2005) (10.1073/pnas.0505581102) / Proc. Natl Acad. Sci. USA by D Baram (2005)
  7. Hesterkamp, T., Hauser, S., Lutcke, H. & Bukau, B. Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc. Natl Acad. Sci. USA 93, 4437–4441 (1996) (10.1073/pnas.93.9.4437) / Proc. Natl Acad. Sci. USA by T Hesterkamp (1996)
  8. Valent, Q. A. et al. Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J. 14, 5494–5505 (1995) (10.1002/j.1460-2075.1995.tb00236.x) / EMBO J. by QA Valent (1995)
  9. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002) (10.1126/science.1068408) / Science by FU Hartl (2002)
  10. Agashe, V. R. et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004) (10.1016/S0092-8674(04)00299-5) / Cell by VR Agashe (2004)
  11. Chang, H. C., Kaiser, C. M., Hartl, F. U. & Barral, J. M. De novo folding of GFP fusion proteins: high efficiency in eukaryotes but not in bacteria. J. Mol. Biol. 353, 397–409 (2005) (10.1016/j.jmb.2005.08.052) / J. Mol. Biol. by HC Chang (2005)
  12. Bremer, H. & Dennis, P. P. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhart, F. C.) 1553–1569 (ASM Press, Washington DC, 1996)
  13. Lill, R., Crooke, E., Guthrie, B. & Wickner, W. The “trigger factor cycle” includes ribosomes, presecretory proteins, and the plasma membrane. Cell 54, 1013–1018 (1988) (10.1016/0092-8674(88)90116-X) / Cell by R Lill (1988)
  14. Maier, R., Eckert, B., Scholz, C., Lilie, H. & Schmid, F. X. Interaction of trigger factor with the ribosome. J. Mol. Biol. 326, 585–592 (2003) (10.1016/S0022-2836(02)01427-4) / J. Mol. Biol. by R Maier (2003)
  15. Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596 (2004) (10.1038/nature02899) / Nature by L Ferbitz (2004)
  16. Ludlam, A. V., Moore, B. A. & Xu, Z. The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc. Natl Acad. Sci. USA 101, 13436–13441 (2004) (10.1073/pnas.0405868101) / Proc. Natl Acad. Sci. USA by AV Ludlam (2004)
  17. Genevaux, P. et al. In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep. 5, 195–200 (2004) (10.1038/sj.embor.7400067) / EMBO Rep. by P Genevaux (2004)
  18. Kramer, G. et al. Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains. J. Bacteriol. 186, 3777–3784 (2004) (10.1128/JB.186.12.3777-3784.2004) / J. Bacteriol. by G Kramer (2004)
  19. Kramer, G. et al. Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli.. J. Biol. Chem. 279, 14165–14170 (2004) (10.1074/jbc.M313635200) / J. Biol. Chem. by G Kramer (2004)
  20. Stryer, L. Fluorescence spectroscopy of proteins. Science 162, 526–533 (1968) (10.1126/science.162.3853.526) / Science by L Stryer (1968)
  21. Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004) (10.1016/S0092-8674(04)00169-2) / Cell by CA Woolhead (2004)
  22. Schroder, G. F. & Grubmuller, H. FRETsg: biomolecular structure model building from multiple FRET experiments. Comp. Phys. Comm. 158, 150–157 (2004) (10.1016/j.cpc.2004.02.001) / Comp. Phys. Comm. by GF Schroder (2004)
  23. Patzelt, H. et al. Three-state equilibrium of Escherichia coli trigger factor. Biol. Chem. 383, 1611–1619 (2002) (10.1515/BC.2002.182) / Biol. Chem. by H Patzelt (2002)
  24. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nature Biotechnol. 19, 751–755 (2001) (10.1038/90802) / Nature Biotechnol. by Y Shimizu (2001)
  25. Patzelt, H. et al. Binding specificity of Escherichia coli trigger factor. Proc. Natl Acad. Sci. USA 98, 14244–14249 (2001) (10.1073/pnas.261432298) / Proc. Natl Acad. Sci. USA by H Patzelt (2001)
  26. Chin, J. W., Martin, A. B., King, D. S., Wang, L. & Schultz, P. G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl Acad. Sci. USA 99, 11020–11024 (2002) (10.1073/pnas.172226299) / Proc. Natl Acad. Sci. USA by JW Chin (2002)
  27. Michalski, C. J., Sells, B. H. & Morrison, M. Molecular morphology of ribosomes. Localization of ribosomal proteins in 50-S subunits. Eur. J. Biochem. 33, 481–485 (1973) (10.1111/j.1432-1033.1973.tb02706.x) / Eur. J. Biochem. by CJ Michalski (1973)
  28. Rudiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997) (10.1093/emboj/16.7.1501) / EMBO J. by S Rudiger (1997)
  29. Roseman, M. A. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J. Mol. Biol. 200, 513–522 (1988) (10.1016/0022-2836(88)90540-2) / J. Mol. Biol. by MA Roseman (1988)
  30. Creighton, T. E. Proteins: Structures and Molecular Properties (W. H. Freeman and Co., New York, 1984)
  31. Conti, E., Franks, N. P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287–298 (1996) (10.1016/S0969-2126(96)00033-0) / Structure by E Conti (1996)
  32. Improta, S., Politou, A. S. & Pastore, A. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4, 323–337 (1996) (10.1016/S0969-2126(96)00036-6) / Structure by S Improta (1996)
  33. Marszalek, P. E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999) (10.1038/47083) / Nature by PE Marszalek (1999)
  34. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000) (10.1126/science.289.5481.905) / Science by N Ban (2000)
  35. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001) (10.1016/S0092-8674(01)00546-3) / Cell by J Harms (2001)
  36. Ullers, R. S. et al. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J. Cell Biol. 161, 679–684 (2003) (10.1083/jcb.200302130) / J. Cell Biol. by RS Ullers (2003)
  37. Beck, K., Wu, L. F., Brunner, J. & Muller, M. Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J. 19, 134–143 (2000) (10.1093/emboj/19.1.134) / EMBO J. by K Beck (2000)
  38. Eisner, G., Moser, M., Schafer, U., Beck, K. & Muller, M. Alternate recruitment of signal recognition particle and trigger factor to the signal sequence of a growing nascent polypeptide. J. Biol. Chem. 281, 7172–7179 (2006) (10.1074/jbc.M511388200) / J. Biol. Chem. by G Eisner (2006)
  39. Buskiewicz, I. et al. Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc. Natl Acad. Sci. USA 101, 7902–7906 (2004) (10.1073/pnas.0402231101) / Proc. Natl Acad. Sci. USA by I Buskiewicz (2004)
  40. Raine, A., Ivanova, N., Wikberg, J. E. & Ehrenberg, M. Simultaneous binding of trigger factor and signal recognition particle to the E. coli ribosome. Biochimie 86, 495–500 (2004) (10.1016/j.biochi.2004.05.004) / Biochimie by A Raine (2004)
  41. Ullers, R. S. et al. Sequence-specific interactions of nascent Escherichia coli polypeptides with trigger factor and signal recognition particle. J. Biol. Chem. 281, 13999–14005 (2006) (10.1074/jbc.M600638200) / J. Biol. Chem. by RS Ullers (2006)
  42. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. & Dobson, C. M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805–808 (2003) (10.1038/nature01891) / Nature by F Chiti (2003)
  43. Spedding, G. in Ribosomes and Protein Synthesis: A Practical Approach (ed. Spedding, G.) 1–29 (Oxford Univ. Press, Oxford, 1990)
  44. Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.. Cell 122, 209–220 (2005) (10.1016/j.cell.2005.05.028) / Cell by MJ Kerner (2005)
Dates
Type When
Created 18 years, 10 months ago (Oct. 18, 2006, 6:38 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 1:59 p.m.)
Indexed 1 week, 2 days ago (Aug. 12, 2025, 5:27 p.m.)
Issued 18 years, 10 months ago (Oct. 15, 2006)
Published 18 years, 10 months ago (Oct. 15, 2006)
Published Online 18 years, 10 months ago (Oct. 15, 2006)
Published Print 18 years, 9 months ago (Nov. 1, 2006)
Funders 0

None

@article{Kaiser_2006, title={Real-time observation of trigger factor function on translating ribosomes}, volume={444}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature05225}, DOI={10.1038/nature05225}, number={7118}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Kaiser, Christian M. and Chang, Hung-Chun and Agashe, Vishwas R. and Lakshmipathy, Sathish K. and Etchells, Stephanie A. and Hayer-Hartl, Manajit and Hartl, F. Ulrich and Barral, José M.}, year={2006}, month=oct, pages={455–460} }