Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
30
Referenced
397
-
Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999)
(
10.1016/S0092-8674(00)80960-5
) / Cell by A Desai (1999) -
Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998)
(
10.1083/jcb.142.3.787
) / J. Cell Biol. by T Maney (1998) -
Rogers, G. C. et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364–370 (2004)
(
10.1038/nature02256
) / Nature by GC Rogers (2004) -
Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996)
(
10.1016/S0092-8674(00)80991-5
) / Cell by CE Walczak (1996) -
Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229–239 (2003)
(
10.1016/S0092-8674(03)00522-1
) / Cell by N Homma (2003) -
Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000)
(
10.1038/71330
) / Nature Cell Biol. by R Tournebize (2000) -
Mennella, V. et al. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nature Cell Biol. 7, 235–245 (2005)
(
10.1038/ncb1222
) / Nature Cell Biol. by V Mennella (2005) -
Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003)
(
10.1016/S1097-2765(03)00049-2
) / Mol. Cell by AW Hunter (2003) -
Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995)
(
10.1083/jcb.128.1.95
) / J. Cell Biol. by L Wordeman (1995) - Adam, G. & Delbruck, M. in Structural Chemistry of Molecular Biology (eds Rich, A. & Davidson, N.) 198–215 (Freeman, San Francisco, 1968) / Structural Chemistry of Molecular Biology by G Adam (1968)
-
Richter, P. H. & Eigen, M. Diffusion controlled reaction rates in spheroidal geometry. Application to repressor–operator association and membrane bound enzymes. Biophys. Chem. 2, 255–263 (1974)
(
10.1016/0301-4622(74)80050-5
) / Biophys. Chem. by PH Richter (1974) -
Moores, C. A. et al. A mechanism for microtubule depolymerization by KinI kinesins. Mol. Cell 9, 903–909 (2002)
(
10.1016/S1097-2765(02)00503-8
) / Mol. Cell by CA Moores (2002) -
Niederstrasser, H., Salehi-Had, H., Gan, E. C., Walczak, C. & Nogales, E. XKCM1 acts on a single protofilament and requires the C terminus of tubulin. J. Mol. Biol. 316, 817–828 (2002)
(
10.1006/jmbi.2001.5360
) / J. Mol. Biol. by H Niederstrasser (2002) -
Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991)
(
10.1083/jcb.114.5.977
) / J. Cell Biol. by EM Mandelkow (1991) -
Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N. & Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167 (1992)
(
10.1091/mbc.3.10.1155
) / Mol. Biol. Cell by AA Hyman (1992) -
Northrup, S. H. & Erickson, H. P. Kinetics of protein–protein association explained by Brownian dynamics computer simulation. Proc. Natl Acad. Sci. USA 89, 3338–3342 (1992)
(
10.1073/pnas.89.8.3338
) / Proc. Natl Acad. Sci. USA by SH Northrup (1992) - Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, Massachusetts, 2001) / Mechanics of Motor Proteins and the Cytoskeleton by J Howard (2001)
- Kalaidzidis, Y. L., Gavrilov, A. V., Zaitsev, P. V., Kalaidzidis, A. L. & Korolev, E. V. PLUK—an environment for software development. Program. Comput. Softw. 23, 206–211 (1997) / Program. Comput. Softw. by YL Kalaidzidis (1997)
-
Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989)
(
10.1038/342154a0
) / Nature by J Howard (1989) -
Klein, G. A., Kruse, K., Cuniberti, G. & Julicher, F. Filament depolymerization by motor molecules. Phys. Rev. Lett. 94, 108102 (2005)
(
10.1103/PhysRevLett.94.108102
) / Phys. Rev. Lett. by GA Klein (2005) -
Paschal, B. M., Obar, R. A. & Vallee, R. B. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature 342, 569–572 (1989)
(
10.1038/342569a0
) / Nature by BM Paschal (1989) -
Maney, T., Wagenbach, M. & Wordeman, L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J. Biol. Chem. 276, 34753–34758 (2001)
(
10.1074/jbc.M106626200
) / J. Biol. Chem. by T Maney (2001) -
Ovechkina, Y., Wagenbach, M. & Wordeman, L. K-loop insertion restores microtubule depolymerizing activity of a ‘neckless’ MCAK mutant. J. Cell Biol. 159, 557–562 (2002)
(
10.1083/jcb.200205089
) / J. Cell Biol. by Y Ovechkina (2002) -
Thorn, K. S., Ubersax, J. A. & Vale, R. D. Engineering the processive run length of the kinesin motor. J. Cell Biol. 151, 1093–1100 (2000)
(
10.1083/jcb.151.5.1093
) / J. Cell Biol. by KS Thorn (2000) -
Wang, Z. & Sheetz, M. P. The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys. J. 78, 1955–1964 (2000)
(
10.1016/S0006-3495(00)76743-9
) / Biophys. J. by Z Wang (2000) -
Nitta, R., Kikkawa, M., Okada, Y. & Hirokawa, N. KIF1A alternately uses two loops to bind microtubules. Science 305, 678–683 (2004)
(
10.1126/science.1096621
) / Science by R Nitta (2004) -
Hackney, D. D. Kinesin ATPase: Rate-limiting ADP release. Proc. Natl Acad. Sci. USA 85, 6314–6318 (1988)
(
10.1073/pnas.85.17.6314
) / Proc. Natl Acad. Sci. USA by DD Hackney (1988) -
Riggs, A. D., Bourgeois, S. & Cohn, M. The lac repressor–operator interaction. 3. Kinetic studies. J. Mol. Biol. 53, 401–417 (1970)
(
10.1016/0022-2836(70)90074-4
) / J. Mol. Biol. by AD Riggs (1970) -
Winter, R. B., Berg, O. G. & von Hippel, P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor–operator interaction: kinetic measurements and conclusions. Biochemistry 20, 6961–6977 (1981)
(
10.1021/bi00527a030
) / Biochemistry by RB Winter (1981) -
Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004)
(
10.1093/nar/gkh624
) / Nucleic Acids Res. by SE Halford (2004)
Dates
Type | When |
---|---|
Created | 19 years, 4 months ago (May 3, 2006, 12:44 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 1:55 p.m.) |
Indexed | 6 days, 2 hours ago (Aug. 30, 2025, 1:06 p.m.) |
Issued | 19 years, 4 months ago (May 1, 2006) |
Published | 19 years, 4 months ago (May 1, 2006) |
Published Print | 19 years, 4 months ago (May 1, 2006) |
@article{Helenius_2006, title={The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends}, volume={441}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature04736}, DOI={10.1038/nature04736}, number={7089}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Helenius, Jonne and Brouhard, Gary and Kalaidzidis, Yannis and Diez, Stefan and Howard, Jonathon}, year={2006}, month=may, pages={115–119} }