Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S., & Howard, J. (2006). The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature, 441(7089), 115–119.

Authors 5
  1. Jonne Helenius (first)
  2. Gary Brouhard (additional)
  3. Yannis Kalaidzidis (additional)
  4. Stefan Diez (additional)
  5. Jonathon Howard (additional)
References 30 Referenced 397
  1. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999) (10.1016/S0092-8674(00)80960-5) / Cell by A Desai (1999)
  2. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998) (10.1083/jcb.142.3.787) / J. Cell Biol. by T Maney (1998)
  3. Rogers, G. C. et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364–370 (2004) (10.1038/nature02256) / Nature by GC Rogers (2004)
  4. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996) (10.1016/S0092-8674(00)80991-5) / Cell by CE Walczak (1996)
  5. Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229–239 (2003) (10.1016/S0092-8674(03)00522-1) / Cell by N Homma (2003)
  6. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000) (10.1038/71330) / Nature Cell Biol. by R Tournebize (2000)
  7. Mennella, V. et al. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nature Cell Biol. 7, 235–245 (2005) (10.1038/ncb1222) / Nature Cell Biol. by V Mennella (2005)
  8. Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003) (10.1016/S1097-2765(03)00049-2) / Mol. Cell by AW Hunter (2003)
  9. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995) (10.1083/jcb.128.1.95) / J. Cell Biol. by L Wordeman (1995)
  10. Adam, G. & Delbruck, M. in Structural Chemistry of Molecular Biology (eds Rich, A. & Davidson, N.) 198–215 (Freeman, San Francisco, 1968) / Structural Chemistry of Molecular Biology by G Adam (1968)
  11. Richter, P. H. & Eigen, M. Diffusion controlled reaction rates in spheroidal geometry. Application to repressor–operator association and membrane bound enzymes. Biophys. Chem. 2, 255–263 (1974) (10.1016/0301-4622(74)80050-5) / Biophys. Chem. by PH Richter (1974)
  12. Moores, C. A. et al. A mechanism for microtubule depolymerization by KinI kinesins. Mol. Cell 9, 903–909 (2002) (10.1016/S1097-2765(02)00503-8) / Mol. Cell by CA Moores (2002)
  13. Niederstrasser, H., Salehi-Had, H., Gan, E. C., Walczak, C. & Nogales, E. XKCM1 acts on a single protofilament and requires the C terminus of tubulin. J. Mol. Biol. 316, 817–828 (2002) (10.1006/jmbi.2001.5360) / J. Mol. Biol. by H Niederstrasser (2002)
  14. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991) (10.1083/jcb.114.5.977) / J. Cell Biol. by EM Mandelkow (1991)
  15. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N. & Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167 (1992) (10.1091/mbc.3.10.1155) / Mol. Biol. Cell by AA Hyman (1992)
  16. Northrup, S. H. & Erickson, H. P. Kinetics of protein–protein association explained by Brownian dynamics computer simulation. Proc. Natl Acad. Sci. USA 89, 3338–3342 (1992) (10.1073/pnas.89.8.3338) / Proc. Natl Acad. Sci. USA by SH Northrup (1992)
  17. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, Massachusetts, 2001) / Mechanics of Motor Proteins and the Cytoskeleton by J Howard (2001)
  18. Kalaidzidis, Y. L., Gavrilov, A. V., Zaitsev, P. V., Kalaidzidis, A. L. & Korolev, E. V. PLUK—an environment for software development. Program. Comput. Softw. 23, 206–211 (1997) / Program. Comput. Softw. by YL Kalaidzidis (1997)
  19. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989) (10.1038/342154a0) / Nature by J Howard (1989)
  20. Klein, G. A., Kruse, K., Cuniberti, G. & Julicher, F. Filament depolymerization by motor molecules. Phys. Rev. Lett. 94, 108102 (2005) (10.1103/PhysRevLett.94.108102) / Phys. Rev. Lett. by GA Klein (2005)
  21. Paschal, B. M., Obar, R. A. & Vallee, R. B. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature 342, 569–572 (1989) (10.1038/342569a0) / Nature by BM Paschal (1989)
  22. Maney, T., Wagenbach, M. & Wordeman, L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J. Biol. Chem. 276, 34753–34758 (2001) (10.1074/jbc.M106626200) / J. Biol. Chem. by T Maney (2001)
  23. Ovechkina, Y., Wagenbach, M. & Wordeman, L. K-loop insertion restores microtubule depolymerizing activity of a ‘neckless’ MCAK mutant. J. Cell Biol. 159, 557–562 (2002) (10.1083/jcb.200205089) / J. Cell Biol. by Y Ovechkina (2002)
  24. Thorn, K. S., Ubersax, J. A. & Vale, R. D. Engineering the processive run length of the kinesin motor. J. Cell Biol. 151, 1093–1100 (2000) (10.1083/jcb.151.5.1093) / J. Cell Biol. by KS Thorn (2000)
  25. Wang, Z. & Sheetz, M. P. The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys. J. 78, 1955–1964 (2000) (10.1016/S0006-3495(00)76743-9) / Biophys. J. by Z Wang (2000)
  26. Nitta, R., Kikkawa, M., Okada, Y. & Hirokawa, N. KIF1A alternately uses two loops to bind microtubules. Science 305, 678–683 (2004) (10.1126/science.1096621) / Science by R Nitta (2004)
  27. Hackney, D. D. Kinesin ATPase: Rate-limiting ADP release. Proc. Natl Acad. Sci. USA 85, 6314–6318 (1988) (10.1073/pnas.85.17.6314) / Proc. Natl Acad. Sci. USA by DD Hackney (1988)
  28. Riggs, A. D., Bourgeois, S. & Cohn, M. The lac repressor–operator interaction. 3. Kinetic studies. J. Mol. Biol. 53, 401–417 (1970) (10.1016/0022-2836(70)90074-4) / J. Mol. Biol. by AD Riggs (1970)
  29. Winter, R. B., Berg, O. G. & von Hippel, P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor–operator interaction: kinetic measurements and conclusions. Biochemistry 20, 6961–6977 (1981) (10.1021/bi00527a030) / Biochemistry by RB Winter (1981)
  30. Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004) (10.1093/nar/gkh624) / Nucleic Acids Res. by SE Halford (2004)
Dates
Type When
Created 19 years, 4 months ago (May 3, 2006, 12:44 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 1:55 p.m.)
Indexed 6 days, 2 hours ago (Aug. 30, 2025, 1:06 p.m.)
Issued 19 years, 4 months ago (May 1, 2006)
Published 19 years, 4 months ago (May 1, 2006)
Published Print 19 years, 4 months ago (May 1, 2006)
Funders 0

None

@article{Helenius_2006, title={The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends}, volume={441}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature04736}, DOI={10.1038/nature04736}, number={7089}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Helenius, Jonne and Brouhard, Gary and Kalaidzidis, Yannis and Diez, Stefan and Howard, Jonathon}, year={2006}, month=may, pages={115–119} }