Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
30
Referenced
345
-
Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998)
(
10.1074/jbc.273.10.5858
) / J. Biol. Chem. by EP Rogakou (1998) -
Arkady, C. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003)
(
10.1038/ncb1004
) / Nature Cell Biol. by C Arkady (2003) -
Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14, 1703–1711 (2004)
(
10.1016/j.cub.2004.09.047
) / Curr. Biol. by R Shroff (2004) -
Usui, T., Ogawa, H. & Petrini, J. H. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7, 1255–1266 (2001)
(
10.1016/S1097-2765(01)00270-2
) / Mol. Cell by T Usui (2001) -
Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000)
(
10.1038/35020123
) / Nature by X Shen (2000) -
Sugawara, N., Wang, X. & Haber, J. E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209–219 (2003)
(
10.1016/S1097-2765(03)00269-7
) / Mol. Cell by N Sugawara (2003) -
Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998)
(
10.1016/S0092-8674(00)81482-8
) / Cell by SE Lee (1998) -
Downs, J. A., Lowndes, N. F. & Jackson, S. P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000)
(
10.1038/35050000
) / Nature by JA Downs (2000) -
Weiss, K. & Simpson, R. T. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLα. Mol. Cell. Biol. 18, 5392–5403 (1998)
(
10.1128/MCB.18.9.5392
) / Mol. Cell. Biol. by K Weiss (1998) -
Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003)
(
10.1016/S1097-2765(03)00186-2
) / Mol. Cell by H Reinke (2003) -
Kristjuhan, A. & Svejstrup, J. Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 23, 4243–4252 (2004)
(
10.1038/sj.emboj.7600433
) / EMBO J. by A Kristjuhan (2004) -
Schwabish, M. A. & Struhl, K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 24, 10111–10117 (2004)
(
10.1128/MCB.24.23.10111-10117.2004
) / Mol. Cell. Biol. by MA Schwabish (2004) -
Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003)
(
10.1093/emboj/cdg541
) / EMBO J. by T Uziel (2003) -
Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004)
(
10.1016/j.cell.2004.08.015
) / Cell by M Lisby (2004) -
Shen, X., Ranallo, R., Choi, E. & Wu, C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12, 147–155 (2003)
(
10.1016/S1097-2765(03)00264-8
) / Mol. Cell by X Shen (2003) -
Morrison, A. J. et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004)
(
10.1016/j.cell.2004.11.037
) / Cell by AJ Morrison (2004) -
van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004)
(
10.1016/j.cell.2004.11.033
) / Cell by H van Attikum (2004) -
Downs, J. A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990 (2004)
(
10.1016/j.molcel.2004.12.003
) / Mol. Cell by JA Downs (2004) -
Frank-Vaillant, M. & Marcand, S. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol. Cell 10, 1189–1199 (2002)
(
10.1016/S1097-2765(02)00705-0
) / Mol. Cell by M Frank-Vaillant (2002) -
Palter, K. B., Foe, V. E. & Alberts, B. M. Evidence for the formation of nucleosome-like histone complexes on single-stranded DNA. Cell 18, 451–467 (1979)
(
10.1016/0092-8674(79)90064-3
) / Cell by KB Palter (1979) -
Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004)
(
10.1126/science.1090701
) / Science by G Mizuguchi (2004) -
Wang, X. & Haber, J. E. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol. 2, 0104–0112 (2004)
(
10.1371/journal.pbio.0020104
) / PLoS Biol. by X Wang (2004) -
Kantake, N., Sugiyama, T., Kolodner, R. D. & Kowalczykowski, S. C. The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein. J. Biol. Chem. 278, 23410–23417 (2003)
(
10.1074/jbc.M302995200
) / J. Biol. Chem. by N Kantake (2003) -
Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004)
(
10.1016/j.molcel.2004.11.027
) / Mol. Cell by E Unal (2004) -
Chai, B., Huang, J., Cairns, B. & Laurent, B. C. Distinct roles for the Rsc and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656–1661 (2005)
(
10.1101/gad.1273105
) / Genes Dev. by B Chai (2005) -
Miyazaki, T., Bressan, D. A., Shinohara, M., Haber, J. E. & Shinohara, A. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J. 23, 939–949 (2004)
(
10.1038/sj.emboj.7600091
) / EMBO J. by T Miyazaki (2004) -
Nakamura, T. M., Du, L. L., Redon, C. & Russell, P. Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol. Cell. Biol. 24, 6215–6230 (2004)
(
10.1128/MCB.24.14.6215-6230.2004
) / Mol. Cell. Biol. by TM Nakamura (2004) -
Kuo, M. H. & Allis, C. D. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433 (1999)
(
10.1006/meth.1999.0879
) / Methods by MH Kuo (1999) - Lichten, W. Data and Error Analysis in the Introductory Physics Laboratory (Allyn and Bacon, Newton, MA, 1988) / Data and Error Analysis in the Introductory Physics Laboratory by W Lichten (1988)
-
Fleming, A. B. & Pennings, S. Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J. 20, 5219–5231 (2001)
(
10.1093/emboj/20.18.5219
) / EMBO J. by AB Fleming (2001)
Dates
Type | When |
---|---|
Created | 19 years, 9 months ago (Nov. 16, 2005, 2:12 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 1:50 p.m.) |
Indexed | 1 month, 3 weeks ago (July 2, 2025, 3:08 p.m.) |
Issued | 19 years, 9 months ago (Nov. 1, 2005) |
Published | 19 years, 9 months ago (Nov. 1, 2005) |
Published Print | 19 years, 9 months ago (Nov. 1, 2005) |
@article{Tsukuda_2005, title={Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae}, volume={438}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature04148}, DOI={10.1038/nature04148}, number={7066}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Tsukuda, Toyoko and Fleming, Alastair B. and Nickoloff, Jac A. and Osley, Mary Ann}, year={2005}, month=nov, pages={379–383} }