Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Tsukuda, T., Fleming, A. B., Nickoloff, J. A., & Osley, M. A. (2005). Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature, 438(7066), 379–383.

Authors 4
  1. Toyoko Tsukuda (first)
  2. Alastair B. Fleming (additional)
  3. Jac A. Nickoloff (additional)
  4. Mary Ann Osley (additional)
References 30 Referenced 345
  1. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998) (10.1074/jbc.273.10.5858) / J. Biol. Chem. by EP Rogakou (1998)
  2. Arkady, C. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003) (10.1038/ncb1004) / Nature Cell Biol. by C Arkady (2003)
  3. Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14, 1703–1711 (2004) (10.1016/j.cub.2004.09.047) / Curr. Biol. by R Shroff (2004)
  4. Usui, T., Ogawa, H. & Petrini, J. H. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7, 1255–1266 (2001) (10.1016/S1097-2765(01)00270-2) / Mol. Cell by T Usui (2001)
  5. Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000) (10.1038/35020123) / Nature by X Shen (2000)
  6. Sugawara, N., Wang, X. & Haber, J. E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209–219 (2003) (10.1016/S1097-2765(03)00269-7) / Mol. Cell by N Sugawara (2003)
  7. Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998) (10.1016/S0092-8674(00)81482-8) / Cell by SE Lee (1998)
  8. Downs, J. A., Lowndes, N. F. & Jackson, S. P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000) (10.1038/35050000) / Nature by JA Downs (2000)
  9. Weiss, K. & Simpson, R. T. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLα. Mol. Cell. Biol. 18, 5392–5403 (1998) (10.1128/MCB.18.9.5392) / Mol. Cell. Biol. by K Weiss (1998)
  10. Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003) (10.1016/S1097-2765(03)00186-2) / Mol. Cell by H Reinke (2003)
  11. Kristjuhan, A. & Svejstrup, J. Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 23, 4243–4252 (2004) (10.1038/sj.emboj.7600433) / EMBO J. by A Kristjuhan (2004)
  12. Schwabish, M. A. & Struhl, K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 24, 10111–10117 (2004) (10.1128/MCB.24.23.10111-10117.2004) / Mol. Cell. Biol. by MA Schwabish (2004)
  13. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003) (10.1093/emboj/cdg541) / EMBO J. by T Uziel (2003)
  14. Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004) (10.1016/j.cell.2004.08.015) / Cell by M Lisby (2004)
  15. Shen, X., Ranallo, R., Choi, E. & Wu, C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12, 147–155 (2003) (10.1016/S1097-2765(03)00264-8) / Mol. Cell by X Shen (2003)
  16. Morrison, A. J. et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004) (10.1016/j.cell.2004.11.037) / Cell by AJ Morrison (2004)
  17. van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004) (10.1016/j.cell.2004.11.033) / Cell by H van Attikum (2004)
  18. Downs, J. A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990 (2004) (10.1016/j.molcel.2004.12.003) / Mol. Cell by JA Downs (2004)
  19. Frank-Vaillant, M. & Marcand, S. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol. Cell 10, 1189–1199 (2002) (10.1016/S1097-2765(02)00705-0) / Mol. Cell by M Frank-Vaillant (2002)
  20. Palter, K. B., Foe, V. E. & Alberts, B. M. Evidence for the formation of nucleosome-like histone complexes on single-stranded DNA. Cell 18, 451–467 (1979) (10.1016/0092-8674(79)90064-3) / Cell by KB Palter (1979)
  21. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004) (10.1126/science.1090701) / Science by G Mizuguchi (2004)
  22. Wang, X. & Haber, J. E. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol. 2, 0104–0112 (2004) (10.1371/journal.pbio.0020104) / PLoS Biol. by X Wang (2004)
  23. Kantake, N., Sugiyama, T., Kolodner, R. D. & Kowalczykowski, S. C. The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein. J. Biol. Chem. 278, 23410–23417 (2003) (10.1074/jbc.M302995200) / J. Biol. Chem. by N Kantake (2003)
  24. Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004) (10.1016/j.molcel.2004.11.027) / Mol. Cell by E Unal (2004)
  25. Chai, B., Huang, J., Cairns, B. & Laurent, B. C. Distinct roles for the Rsc and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656–1661 (2005) (10.1101/gad.1273105) / Genes Dev. by B Chai (2005)
  26. Miyazaki, T., Bressan, D. A., Shinohara, M., Haber, J. E. & Shinohara, A. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J. 23, 939–949 (2004) (10.1038/sj.emboj.7600091) / EMBO J. by T Miyazaki (2004)
  27. Nakamura, T. M., Du, L. L., Redon, C. & Russell, P. Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol. Cell. Biol. 24, 6215–6230 (2004) (10.1128/MCB.24.14.6215-6230.2004) / Mol. Cell. Biol. by TM Nakamura (2004)
  28. Kuo, M. H. & Allis, C. D. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433 (1999) (10.1006/meth.1999.0879) / Methods by MH Kuo (1999)
  29. Lichten, W. Data and Error Analysis in the Introductory Physics Laboratory (Allyn and Bacon, Newton, MA, 1988) / Data and Error Analysis in the Introductory Physics Laboratory by W Lichten (1988)
  30. Fleming, A. B. & Pennings, S. Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J. 20, 5219–5231 (2001) (10.1093/emboj/20.18.5219) / EMBO J. by AB Fleming (2001)
Dates
Type When
Created 19 years, 9 months ago (Nov. 16, 2005, 2:12 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 1:50 p.m.)
Indexed 1 month, 3 weeks ago (July 2, 2025, 3:08 p.m.)
Issued 19 years, 9 months ago (Nov. 1, 2005)
Published 19 years, 9 months ago (Nov. 1, 2005)
Published Print 19 years, 9 months ago (Nov. 1, 2005)
Funders 0

None

@article{Tsukuda_2005, title={Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae}, volume={438}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature04148}, DOI={10.1038/nature04148}, number={7066}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Tsukuda, Toyoko and Fleming, Alastair B. and Nickoloff, Jac A. and Osley, Mary Ann}, year={2005}, month=nov, pages={379–383} }