Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Martin, A., Baker, T. A., & Sauer, R. T. (2005). Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature, 437(7062), 1115–1120.

Authors 3
  1. Andreas Martin (first)
  2. Tania A. Baker (additional)
  3. Robert T. Sauer (additional)
References 37 Referenced 343
  1. Gottesman, S. Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465–506 (1996) (10.1146/annurev.genet.30.1.465) / Annu. Rev. Genet. by S Gottesman (1996)
  2. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA + : A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999) (10.1101/gr.9.1.27) / Genome Res. by AF Neuwald (1999)
  3. Langer, T. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem. Sci. 25, 247–251 (2000) (10.1016/S0968-0004(99)01541-8) / Trends Biochem. Sci. by T Langer (2000)
  4. Ogura, T. & Wilkinson, A. J. AAA + superfamily ATPases: common structure—diverse function. Genes Cells 6, 575–597 (2001) (10.1046/j.1365-2443.2001.00447.x) / Genes Cells by T Ogura (2001)
  5. Gottesman, S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19, 565–587 (2003) (10.1146/annurev.cellbio.19.110701.153228) / Annu. Rev. Cell Dev. Biol. by S Gottesman (2003)
  6. Sauer, R. T. et al. Sculpting the proteome with AAA + proteases and disassembly machines. Cell 119, 9–18 (2004) (10.1016/j.cell.2004.09.020) / Cell by RT Sauer (2004)
  7. Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nature Rev. Mol. Cell Biol. 5, 177–187 (2004) (10.1038/nrm1336) / Nature Rev. Mol. Cell Biol. by CM Pickart (2004)
  8. Grimaud, R., Kessel, M., Beuron, F., Steven, A. C. & Maurizi, M. R. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273, 12476–12481 (1998) (10.1074/jbc.273.20.12476) / J. Biol. Chem. by R Grimaud (1998)
  9. Kim, Y. I., Burton, R. E., Burton, B. M., Sauer, R. T. & Baker, T. A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000) (10.1016/S1097-2765(00)80243-9) / Mol. Cell by YI Kim (2000)
  10. Singh, S. K., Grimaud, R., Hoskins, J. R., Wickner, S. & Maurizi, M. R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl Acad. Sci. USA 97, 8898–8903 (2000) (10.1073/pnas.97.16.8898) / Proc. Natl Acad. Sci. USA by SK Singh (2000)
  11. Burton, R. E., Siddiqui, S. M., Kim, Y. I., Baker, T. A. & Sauer, R. T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J. 20, 3092–3100 (2001) (10.1093/emboj/20.12.3092) / EMBO J. by RE Burton (2001)
  12. Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA 98, 10584–10589 (2001) (10.1073/pnas.191375298) / Proc. Natl Acad. Sci. USA by JM Flynn (2001)
  13. Kenniston, J. A., Baker, T. A., Fernandez, J. M. & Sauer, R. T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of a AAA + degradation machine. Cell 114, 511–520 (2003) (10.1016/S0092-8674(03)00612-3) / Cell by JA Kenniston (2003)
  14. Bolon, D. N., Grant, R. A., Baker, T. A. & Sauer, R. T. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA + ClpXP protease. Mol. Cell 16, 343–350 (2004) (10.1016/j.molcel.2004.10.001) / Mol. Cell by DN Bolon (2004)
  15. Hersch, G. L., Burton, R. E., Bolon, D. N., Baker, T. A. & Sauer, R. T. Asymmetric interactions of ATP with the AAA + ClpX6 unfoldase: allosteric control of a protein machine. Cell 121, 1017–1027 (2005) (10.1016/j.cell.2005.05.024) / Cell by GL Hersch (2005)
  16. Hingorani, M. M., Washington, M. T., Moore, K. C. & Patel, S. S. The dTTPase mechanism of T7 DNA helicase resembles the binding change mechanism of the F1-ATPase. Proc. Natl Acad. Sci. USA 94, 5012–5017 (1997) (10.1073/pnas.94.10.5012) / Proc. Natl Acad. Sci. USA by MM Hingorani (1997)
  17. Stitt, B. L. & Xu, Y. Sequential hydrolysis of ATP molecules bound in interacting catalytic sites of Escherichia coli transcription termination protein Rho. J. Biol. Chem. 273, 26477–26486 (1998) (10.1074/jbc.273.41.26477) / J. Biol. Chem. by BL Stitt (1998)
  18. Stitt, B. L. Escherichia coli transcription termination factor Rho binds and hydrolyzes ATP using a single class of three sites. Biochemistry 40, 2276–2281 (2001) (10.1021/bi002253a) / Biochemistry by BL Stitt (2001)
  19. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU–HsIV. Nature 403, 800–805 (2000) (10.1038/35001629) / Nature by M Bochtler (2000)
  20. Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000) (10.1016/S0092-8674(00)80871-5) / Cell by MR Singleton (2000)
  21. Zalk, R. & Shoshan-Barmatz, V. ATP-binding sites in brain p97/VCP (valosin-containing protein), a multifunctional AAA ATPase. Biochem. J. 374, 473–480 (2003) (10.1042/bj20030219) / Biochem. J. by R Zalk (2003)
  22. Hishida, T., Han, Y. W., Fujimoto, S., Iwasaki, H. & Shinagawa, H. Direct evidence that a conserved arginine in RuvB AAA + ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer. Proc. Natl Acad. Sci. USA 101, 9573–9577 (2004) (10.1073/pnas.0403584101) / Proc. Natl Acad. Sci. USA by T Hishida (2004)
  23. Boyer, P. D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997) (10.1146/annurev.biochem.66.1.717) / Annu. Rev. Biochem. by PD Boyer (1997)
  24. Wojtyra, U. A., Thibault, G., Tuite, A. & Houry, W. A. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J. Biol. Chem. 278, 48981–48990 (2003) (10.1074/jbc.M307825200) / J. Biol. Chem. by UA Wojtyra (2003)
  25. Kim, D. Y. & Kim, K. K. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem. 278, 50664–50670 (2003) (10.1074/jbc.M305882200) / J. Biol. Chem. by DY Kim (2003)
  26. Joshi, S. A., Hersch, G. L., Baker, T. A. & Sauer, R. T. Communication between ClpX and ClpP during substrate processing and degradation. Nature Struct. Mol. Biol. 11, 404–411 (2004) (10.1038/nsmb752) / Nature Struct. Mol. Biol. by SA Joshi (2004)
  27. Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002) (10.1016/S1097-2765(02)00485-9) / Mol. Cell by DA Dougan (2002)
  28. Levchenko, I., Seidel, M., Sauer, R. T. & Baker, T. A. A specificity-enhancing factor for the ClpXP degradation machine. Science 289, 2354–2356 (2000) (10.1126/science.289.5488.2354) / Science by I Levchenko (2000)
  29. Kenniston, J. A., Baker, T. A. & Sauer, R. T. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proc. Natl Acad. Sci. USA 102, 1390–1395 (2005) (10.1073/pnas.0409634102) / Proc. Natl Acad. Sci. USA by JA Kenniston (2005)
  30. Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001) (10.1016/S1097-2765(01)00209-X) / Mol. Cell by C Lee (2001)
  31. Gai, D., Zhao, R., Li, D., Finkielstein, C. V. & Chen, X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumour antigen. Cell 119, 47–60 (2004) (10.1016/j.cell.2004.09.017) / Cell by D Gai (2004)
  32. Lee, S. Y. et al. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA + ATPase domains. Genes Dev. 17, 2552–2563 (2003) (10.1101/gad.1125603) / Genes Dev. by SY Lee (2003)
  33. Toth, E. A., Li, Y., Sawaya, M. R., Cheng, Y. & Ellenberger, T. The crystal structure of the bifunctional primase-helicase of bacteriophage T7. Mol. Cell 12, 1113–1123 (2003) (10.1016/S1097-2765(03)00442-8) / Mol. Cell by EA Toth (2003)
  34. Skordalakes, E. & Berger, J. M. Structure of Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114, 135–146 (2003) (10.1016/S0092-8674(03)00512-9) / Cell by E Skordalakes (2003)
  35. Schwacha, A. & Bell, S. P. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol. Cell 8, 1093–1104 (2001) (10.1016/S1097-2765(01)00389-6) / Mol. Cell by A Schwacha (2001)
  36. Bowman, G. D., Goedken, E. R., Kazmirski, S. L., O'Donnell, M. & Kuriyan, J. DNA polymerase clamp loaders and DNA recognition. FEBS Lett. 579, 863–867 (2005) (10.1016/j.febslet.2004.11.038) / FEBS Lett. by GD Bowman (2005)
  37. Sakato, M. & King, S. M. Design and regulation of the AAA + microtubule motor dynein. J. Struct. Biol. 146, 58–71 (2004) (10.1016/j.jsb.2003.09.026) / J. Struct. Biol. by M Sakato (2004)
Dates
Type When
Created 19 years, 10 months ago (Oct. 19, 2005, 1:38 p.m.)
Deposited 1 year, 6 months ago (Jan. 30, 2024, 10:39 p.m.)
Indexed 1 month, 2 weeks ago (July 4, 2025, 6:06 a.m.)
Issued 19 years, 10 months ago (Oct. 1, 2005)
Published 19 years, 10 months ago (Oct. 1, 2005)
Published Print 19 years, 10 months ago (Oct. 1, 2005)
Funders 0

None

@article{Martin_2005, title={Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines}, volume={437}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature04031}, DOI={10.1038/nature04031}, number={7062}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Martin, Andreas and Baker, Tania A. and Sauer, Robert T.}, year={2005}, month=oct, pages={1115–1120} }