Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Carulla, N., Caddy, G. L., Hall, D. R., Zurdo, J., Gairí, M., Feliz, M., Giralt, E., Robinson, C. V., & Dobson, C. M. (2005). Molecular recycling within amyloid fibrils. Nature, 436(7050), 554–558.

Authors 9
  1. Natàlia Carulla (first)
  2. Gemma L. Caddy (additional)
  3. Damien R. Hall (additional)
  4. Jesús Zurdo (additional)
  5. Margarida Gairí (additional)
  6. Miguel Feliz (additional)
  7. Ernest Giralt (additional)
  8. Carol V. Robinson (additional)
  9. Christopher M. Dobson (additional)
References 30 Referenced 307
  1. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003) (10.1038/nature02261) / Nature by CM Dobson (2003)
  2. Sunde, M. & Blake, C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Advan. Protein Chem. 50, 123–159 (1997) (10.1016/S0065-3233(08)60320-4) / Advan. Protein Chem. by M Sunde (1997)
  3. Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003) (10.1038/nature02264) / Nature by DJ Selkoe (2003)
  4. Wickner, R. B. et al. Prions: proteins as genes and infectious entities. Genes Dev. 18, 470–485 (2004) (10.1101/gad.1177104) / Genes Dev. by RB Wickner (2004)
  5. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002) (10.1126/science.1067484) / Science by MR Chapman (2002)
  6. Kelly, J. W. & Balch, W. E. Amyloid as a natural product. J. Cell Biol. 161, 461–462 (2003) (10.1083/jcb.200304074) / J. Cell Biol. by JW Kelly (2003)
  7. Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003) (10.1016/S0092-8674(03)01020-1) / Cell by K Si (2003)
  8. Stefani, M. & Dobson, C. M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678–699 (2003) (10.1007/s00109-003-0464-5) / J. Mol. Med. by M Stefani (2003)
  9. Jiménez, J. L. et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821 (1999) (10.1093/emboj/18.4.815) / EMBO J. by JL Jiménez (1999)
  10. Zurdo, J., Guijarro, J. I., Jiménez, J. L., Saibil, H. R. & Dobson, C. M. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. J. Mol. Biol. 311, 325–340 (2001) (10.1006/jmbi.2001.4858) / J. Mol. Biol. by J Zurdo (2001)
  11. Zurdo, J., Guijarro, J. I. & Dobson, C. M. Preparation and characterization of purified amyloid fibrils. J. Am. Chem. Soc. 123, 8141–8142 (2001) (10.1021/ja016229b) / J. Am. Chem. Soc. by J Zurdo (2001)
  12. Ventura, S. et al. Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc. Natl Acad. Sci. USA 101, 7258–7263 (2004) (10.1073/pnas.0308249101) / Proc. Natl Acad. Sci. USA by S Ventura (2004)
  13. Englander, S. W. & Krishna, M. M. G. Hydrogen exchange. Nature Struct. Biol. 8, 741–742 (2001) (10.1038/nsb0901-741) / Nature Struct. Biol. by SW Englander (2001)
  14. Kheterpal, I., Zhou, S., Cook, K. D. & Wetzel, R. Aβ amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc. Natl Acad. Sci. USA 97, 13597–13601 (2000) (10.1073/pnas.250288897) / Proc. Natl Acad. Sci. USA by I Kheterpal (2000)
  15. Hoshino, M. et al. Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange. Nature Struct. Biol. 9, 332–336 (2002) (10.1038/nsb792) / Nature Struct. Biol. by M Hoshino (2002)
  16. Olofsson, A., Ippel, J. H., Wijmenga, S. S., Lundgren, E. & Oehman, A. Probing solvent accessibility of transthyretin amyloid by solution NMR spectroscopy. J. Biol. Chem. 279, 5699–5707 (2004) (10.1074/jbc.M310605200) / J. Biol. Chem. by A Olofsson (2004)
  17. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005) (10.1126/science.1105850) / Science by AT Petkova (2005)
  18. Polverino de Laureto, P. et al. Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J. Mol. Biol. 334, 129–141 (2003) (10.1016/j.jmb.2003.09.024) / J. Mol. Biol. by P Polverino de Laureto (2003)
  19. Miranker, A., Robinson, C. V., Radford, S. E., Aplin, R. T. & Dobson, C. M. Detection of transient protein folding populations by mass spectrometry. Science 262, 896–900 (1993) (10.1126/science.8235611) / Science by A Miranker (1993)
  20. Yamaguchi, K. et al. Core and heterogeneity of β2-microglobulin amyloid fibrils as revealed by H/D exchange. J. Mol. Biol. 338, 559–571 (2004) (10.1016/j.jmb.2004.02.067) / J. Mol. Biol. by K Yamaguchi (2004)
  21. Kheterpal, I. et al. Aβ protofibrils possess a stable core structure resistant to hydrogen exchange. Biochemistry 42, 14092–14098 (2003) (10.1021/bi0357816) / Biochemistry by I Kheterpal (2003)
  22. Ban, T., Hamada, D., Hasegawa, K., Naiki, H. & Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 278, 16462–16465 (2003) (10.1074/jbc.C300049200) / J. Biol. Chem. by T Ban (2003)
  23. Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T. & Cooper, G. J. S. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol. 285, 33–39 (1999) (10.1006/jmbi.1998.2299) / J. Mol. Biol. by C Goldsbury (1999)
  24. Hall, D. & Edskes, H. Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J. Mol. Biol. 336, 775–786 (2004) (10.1016/j.jmb.2003.12.004) / J. Mol. Biol. by D Hall (2004)
  25. Hammarstroem, P., Wiseman, R. L., Powers, E. T. & Kelly, J. W. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713–716 (2003) (10.1126/science.1079589) / Science by P Hammarstroem (2003)
  26. Sekijima, Y. et al. The biological and chemical basis for tissue-selective amyloid disease. Cell 121, 73–85 (2005) (10.1016/j.cell.2005.01.018) / Cell by Y Sekijima (2005)
  27. Cohen, F. E. & Kelly, J. W. Therapeutic approaches to protein-misfolding diseases. Nature 426, 905–909 (2003) (10.1038/nature02265) / Nature by FE Cohen (2003)
  28. Hamada, D., Yanagihara, I. & Tsumoto, K. Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotechnol. 22, 93–97 (2004) (10.1016/j.tibtech.2003.12.003) / Trends Biotechnol. by D Hamada (2004)
  29. MacPhee, C. E. & Woolfson, D. N. Engineered and designed peptide-based fibrous biomaterials. Curr. Opin. Solid State Mater. Sci. 8, 141–149 (2004) (10.1016/j.cossms.2004.01.010) / Curr. Opin. Solid State Mater. Sci. by CE MacPhee (2004)
  30. Dobson, C. M. In the footsteps of alchemists. Science 304, 1261–1262 (2004) (10.1126/science.1093078) / Science by CM Dobson (2004)
Dates
Type When
Created 20 years, 1 month ago (July 27, 2005, 3:11 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 1:48 p.m.)
Indexed 1 month ago (July 28, 2025, 2:48 a.m.)
Issued 20 years, 1 month ago (July 28, 2005)
Published 20 years, 1 month ago (July 28, 2005)
Published Print 20 years, 1 month ago (July 28, 2005)
Funders 0

None

@article{Carulla_2005, title={Molecular recycling within amyloid fibrils}, volume={436}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature03986}, DOI={10.1038/nature03986}, number={7050}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Carulla, Natàlia and Caddy, Gemma L. and Hall, Damien R. and Zurdo, Jesús and Gairí, Margarida and Feliz, Miguel and Giralt, Ernest and Robinson, Carol V. and Dobson, Christopher M.}, year={2005}, month=jul, pages={554–558} }