Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Riedl, S. J., Li, W., Chao, Y., Schwarzenbacher, R., & Shi, Y. (2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature, 434(7035), 926–933.

Authors 5
  1. Stefan J. Riedl (first)
  2. Wenyu Li (additional)
  3. Yang Chao (additional)
  4. Robert Schwarzenbacher (additional)
  5. Yigong Shi (additional)
References 30 Referenced 280
  1. Riedl, S. J. & Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nature Rev. Mol. Cell Biol. 5, 897–907 (2004) (10.1038/nrm1496) / Nature Rev. Mol. Cell Biol. by SJ Riedl (2004)
  2. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001) / Genes Dev. by X Wang (2001)
  3. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997) (10.1016/S0092-8674(00)80434-1) / Cell by P Li (1997)
  4. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1-cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999) (10.1074/jbc.274.17.11549) / J. Biol. Chem. by H Zou (1999)
  5. Jiang, X. & Wang, X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 275, 31199–31203 (2000) (10.1074/jbc.C000405200) / J. Biol. Chem. by X Jiang (2000)
  6. Hu, Y., Benedict, M. A., Ding, L. & Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 18, 3586–3595 (1999) (10.1093/emboj/18.13.3586) / EMBO J. by Y Hu (1999)
  7. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. & Alnemri, E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941–17945 (1999) (10.1074/jbc.274.25.17941) / J. Biol. Chem. by A Saleh (1999)
  8. Rodriguez, J. & Lazebnik, Y. Caspase-9 and Apaf-1 form an active holoenzyme. Genes Dev. 13, 3179–3184 (1999) (10.1101/gad.13.24.3179) / Genes Dev. by J Rodriguez (1999)
  9. Inohara, N. & Nunez, G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 20, 6473–6481 (2001) (10.1038/sj.onc.1204787) / Oncogene by N Inohara (2001)
  10. Hu, Y., Ding, L., Spencer, D. M. & Nunez, G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J. Biol. Chem. 273, 33489–33494 (1998) (10.1074/jbc.273.50.33489) / J. Biol. Chem. by Y Hu (1998)
  11. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957 (1998) (10.1016/S1097-2765(00)80095-7) / Mol. Cell by SM Srinivasula (1998)
  12. Kaufmann, E. & Knochel, W. Five years on the wings of fork head. Mech. Dev. 57, 3–20 (1996) (10.1016/0925-4773(96)00539-4) / Mech. Dev. by E Kaufmann (1996)
  13. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993) (10.1006/jmbi.1993.1489) / J. Mol. Biol. by L Holm (1993)
  14. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998) (10.1016/S0092-8674(00)81593-7) / Cell by CU Lenzen (1998)
  15. Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000) (10.1016/S1097-2765(00)00143-X) / Mol. Cell by X Zhang (2000)
  16. Lupas, A. N. & Martin, J. AAA proteins. Curr. Opin. Struct. Biol. 12, 746–753 (2002) (10.1016/S0959-440X(02)00388-3) / Curr. Opin. Struct. Biol. by AN Lupas (2002)
  17. Jaroszewski, L., Rychlewski, L., Reed, J. C. & Godzik, A. ATP-activated oligomerization as a mechanism for apoptosis regulation: fold and mechanism prediction for CED-4. Proteins 39, 197–203 (2000) (10.1002/(SICI)1097-0134(20000515)39:3<197::AID-PROT10>3.0.CO;2-V) / Proteins by L Jaroszewski (2000)
  18. Qin, H. et al. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399, 547–555 (1999) (10.1038/21124) / Nature by H Qin (1999)
  19. Genini, D. et al. Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway. J. Biol. Chem. 275, 29–34 (2000) (10.1074/jbc.275.1.29) / J. Biol. Chem. by D Genini (2000)
  20. Leoni, L. M. et al. Induction of an apoptotic program in cell-free extracts by 2-chloro-2′-deoxyadenosine 5′-triphosphate and cytochrome c. Proc. Natl Acad. Sci. USA 95, 9567–9571 (1998) (10.1073/pnas.95.16.9567) / Proc. Natl Acad. Sci. USA by LM Leoni (1998)
  21. Cain, K., Brown, D. G., Langlais, C. & Cohen, G. M. Caspase activation involves the formation of the aposome, a large (∼ 700 kDa) caspase-activating complex. J. Biol. Chem. 274, 22686–22692 (1999) (10.1074/jbc.274.32.22686) / J. Biol. Chem. by K Cain (1999)
  22. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800–805 (2000) (10.1038/35001629) / Nature by M Bochtler (2000)
  23. Gai, D., Zhao, R., Li, D., Finkielstein, C. V. & Chen, X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119, 47–60 (2004) (10.1016/j.cell.2004.09.017) / Cell by D Gai (2004)
  24. Acehan, D. et al. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding and activation. Mol. Cell 9, 423–432 (2002) (10.1016/S1097-2765(02)00442-2) / Mol. Cell by D Acehan (2002)
  25. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997) (10.1016/S0076-6879(97)76066-X) / Methods Enzymol. by Z Otwinowski (1997)
  26. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999) (10.1107/S0907444999000839) / Acta Crystallogr. D by TC Terwilliger (1999)
  27. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991) (10.1107/S0108767390010224) / Acta Crystallogr. A by TA Jones (1991)
  28. Collaborative Computational Project No 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994) (10.1107/S0907444994003112) / Acta Crystallogr. D by Collaborative Computational Project No 4 (1994)
  29. Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991) (10.1107/S0021889891004399) / J. Appl. Crystallogr. by PJ Kraulis (1991)
  30. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991) (10.1002/prot.340110407) / Proteins Struct. Funct. Genet. by A Nicholls (1991)
Dates
Type When
Created 20 years, 4 months ago (April 13, 2005, 3:38 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 1:44 p.m.)
Indexed 1 month, 3 weeks ago (July 11, 2025, 9:26 p.m.)
Issued 20 years, 5 months ago (April 1, 2005)
Published 20 years, 5 months ago (April 1, 2005)
Published Print 20 years, 5 months ago (April 1, 2005)
Funders 0

None

@article{Riedl_2005, title={Structure of the apoptotic protease-activating factor 1 bound to ADP}, volume={434}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature03465}, DOI={10.1038/nature03465}, number={7035}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Riedl, Stefan J. and Li, Wenyu and Chao, Yang and Schwarzenbacher, Robert and Shi, Yigong}, year={2005}, month=apr, pages={926–933} }