Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Flannigan, D. J., & Suslick, K. S. (2005). Plasma formation and temperature measurement during single-bubble cavitation. Nature, 434(7029), 52–55.

Authors 2
  1. David J. Flannigan (first)
  2. Kenneth S. Suslick (additional)
References 30 Referenced 529
  1. Barber, B. P. & Putterman, S. J. Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. Phys. Rev. Lett. 69, 3839–3842 (1992) (10.1103/PhysRevLett.69.3839) / Phys. Rev. Lett. by BP Barber (1992)
  2. Gompf, B., Günther, R., Nick, G., Pecha, R. & Eisenmenger, W. Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys. Rev. Lett. 79, 1405–1408 (1997) (10.1103/PhysRevLett.79.1405) / Phys. Rev. Lett. by B Gompf (1997)
  3. Gaitan, D. F., Crum, L. A., Church, C. C. & Roy, R. A. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 91, 3166–3183 (1992) (10.1121/1.402855) / J. Acoust. Soc. Am. by DF Gaitan (1992)
  4. Lohse, D., Brenner, M. P., Dupont, T. F., Hilgenfeldt, S. & Johnston, B. Sonoluminescing air bubbles rectify argon. Phys. Rev. Lett. 78, 1359–1362 (1997) (10.1103/PhysRevLett.78.1359) / Phys. Rev. Lett. by D Lohse (1997)
  5. Brenner, M. P., Hilgenfeldt, S. & Lohse, D. Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425–484 (2002) (10.1103/RevModPhys.74.425) / Rev. Mod. Phys. by MP Brenner (2002)
  6. Moss, W. C., Clarke, D. B. & Young, D. A. Calculated pulse widths and spectra of a single sonoluminescing bubble. Science 276, 1398–1401 (1997) (10.1126/science.276.5317.1398) / Science by WC Moss (1997)
  7. Moss, W. C. et al. Computed optical emissions from a sonoluminescing bubble. Phys. Rev. E 59, 2986–2992 (1999) (10.1103/PhysRevE.59.2986) / Phys. Rev. E by WC Moss (1999)
  8. Burnett, P. D. S. et al. Modeling a sonoluminescing bubble as a plasma. J. Quant. Spectrosc. Radiat. Transfer 71, 215–223 (2001) (10.1016/S0022-4073(01)00069-3) / J. Quant. Spectrosc. Radiat. Transfer by PDS Burnett (2001)
  9. Hilgenfeldt, S., Grossmann, S. & Lohse, D. A simple explanation of light emission in sonoluminescence. Nature 398, 402–405 (1999) (10.1038/18842) / Nature by S Hilgenfeldt (1999)
  10. Yasui, K. Mechanism of single-bubble sonoluminescence. Phys. Rev. E 60, 1754–1758 (1999) (10.1103/PhysRevE.60.1754) / Phys. Rev. E by K Yasui (1999)
  11. Taleyarkhan, R. P. et al. Evidence for nuclear emissions during acoustic cavitation. Science 295, 1868–1873 (2002) (10.1126/science.1067589) / Science by RP Taleyarkhan (2002)
  12. Taleyarkhan, R. P. et al. Additional evidence of nuclear emissions during cavitation. Phys. Rev. E 69, 036109 (2004) (10.1103/PhysRevE.69.036109) / Phys. Rev. E by RP Taleyarkhan (2004)
  13. Hiller, R., Weninger, K., Putterman, S. J. & Barber, B. P. Effect of noble gas doping in single-bubble sonoluminescence. Science 266, 248–250 (1994) (10.1126/science.266.5183.248) / Science by R Hiller (1994)
  14. McNamara, W. B. III, Didenko, Y. T. & Suslick, K. S. Sonoluminescence temperatures during multi-bubble cavitation. Nature 401, 772–775 (1999) (10.1038/44536) / Nature by WB McNamara III (1999)
  15. Flint, E. B. & Suslick, K. S. The temperature of cavitation. Science 253, 1397–1399 (1991) (10.1126/science.253.5026.1397) / Science by EB Flint (1991)
  16. Didenko, Y. T., McNamara, W. B. III & Suslick, K. S. Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Phys. Rev. Lett. 84, 777–780 (2000) (10.1103/PhysRevLett.84.777) / Phys. Rev. Lett. by YT Didenko (2000)
  17. Didenko, Y. T., McNamara, W. B. III & Suslick, K. S. Molecular emission from single-bubble sonoluminescence. Nature 407, 877–879 (2000) (10.1038/35038020) / Nature by YT Didenko (2000)
  18. Greenewalt, C. H. Partial pressures of aqueous solutions of sulfuric acid. J. Ind. Eng. Chem. 17, 522–523 (1925) (10.1021/ie50185a036) / J. Ind. Eng. Chem. by CH Greenewalt (1925)
  19. Troia, A., Ripa, D. M. & Spagnolo, R. in World Congress on Ultrasonics (ed. Cassereau, D.) 1041–1044 (Société Française d'Acoustique, Paris, 2003) / World Congress on Ultrasonics by A Troia (2003)
  20. Vazquez, G., Camara, C., Putterman, S. & Weninger, K. Sonoluminescence: Nature's smallest blackbody. Opt. Lett. 26, 575–577 (2001) (10.1364/OL.26.000575) / Opt. Lett. by G Vazquez (2001)
  21. Didenko, Y. T. & Suslick, K. S. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418, 394–397 (2002) (10.1038/nature00895) / Nature by YT Didenko (2002)
  22. Wiese, W. L., Brault, J. W., Danzmann, K., Helbig, V. & Kock, M. Unified set of atomic transition probabilities for neutral argon. Phys. Rev. A. 39, 2461–2471 (1989) (10.1103/PhysRevA.39.2461) / Phys. Rev. A. by WL Wiese (1989)
  23. Toegel, R. & Lohse, D. Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory. J. Chem. Phys. 118, 1863–1875 (2003) (10.1063/1.1531610) / J. Chem. Phys. by R Toegel (2003)
  24. Cooper, R., Grieser, F., Sauer, M. C. Jr & Sangster, D. F. Formation and decay kinetics of the 2p levels of neon, argon, krypton, and xenon produced by electron-beam pulses. J. Phys. Chem. 81, 2215–2220 (1977) (10.1021/j100539a001) / J. Phys. Chem. by R Cooper (1977)
  25. Zel'dovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966) / Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena by YB Zel'dovich (1966)
  26. Tourin, R. H. Spectroscopic Gas Temperature Measurement (Elsevier, Amsterdam, 1966) / Spectroscopic Gas Temperature Measurement by RH Tourin (1966)
  27. Camara, C., Putterman, S. & Kirilov, E. Sonoluminescence from a single bubble driven at 1 megahertz. Phys. Rev. Lett. 92, 124301 (2004) (10.1103/PhysRevLett.92.124301) / Phys. Rev. Lett. by C Camara (2004)
  28. Yasui, K. Single-bubble sonoluminescence from noble gases. Phys. Rev. E 63, 035301 (2001) (10.1103/PhysRevE.63.035301) / Phys. Rev. E by K Yasui (2001)
  29. Ajello, J. M. et al. Middle ultraviolet and visible spectrum of SO2 by electron impact. J. Geophys. Res. Space 107, SIA2 (2002) (10.1029/2001JA000122) / J. Geophys. Res. Space by JM Ajello (2002)
  30. Schappe, R. S., Schulman, M. B., Sharpton, F. A. & Lin, C. C. Emission of the O2 + (A2Πu → X2Πg) second-negative-band system produced by electron impact on O2 . Phys. Rev. A 38, 4537–4545 (1988) (10.1103/PhysRevA.38.4537) / Phys. Rev. A by RS Schappe (1988)
Dates
Type When
Created 20 years, 6 months ago (March 2, 2005, 1:03 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:30 p.m.)
Indexed 1 week, 1 day ago (Aug. 28, 2025, 8:09 a.m.)
Issued 20 years, 6 months ago (March 1, 2005)
Published 20 years, 6 months ago (March 1, 2005)
Published Print 20 years, 6 months ago (March 1, 2005)
Funders 0

None

@article{Flannigan_2005, title={Plasma formation and temperature measurement during single-bubble cavitation}, volume={434}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature03361}, DOI={10.1038/nature03361}, number={7029}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Flannigan, David J. and Suslick, Kenneth S.}, year={2005}, month=mar, pages={52–55} }