Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Gruenheid, S., & Finlay, B. B. (2003). Microbial pathogenesis and cytoskeletal function. Nature, 422(6933), 775–781.

Authors 2
  1. Samantha Gruenheid (first)
  2. B. Brett Finlay (additional)
References 73 Referenced 247
  1. Sandvig, K. & Van Deurs, B. Membrane traffic exploited by protein toxins. Annu. Rev. Cell Dev. Biol. 18, 1–24 (2002). (10.1146/annurev.cellbio.18.011502.142107) / Annu. Rev. Cell Dev. Biol. by K Sandvig (2002)
  2. May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001). (10.1242/jcs.114.6.1061) / J. Cell Sci. by RC May (2001)
  3. Amyere, M. et al. Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int. J. Med. Microbiol. 291, 487–494 (2002). (10.1078/1438-4221-00157) / Int. J. Med. Microbiol. by M Amyere (2002)
  4. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998). (10.1128/MMBR.62.2.379-433.1998) / Microbiol. Mol. Biol. Rev. by CJ Hueck (1998)
  5. Zhou, D. & Galán, J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 3, 1293–1298 (2001). (10.1016/S1286-4579(01)01489-7) / Microbes Infect. by D Zhou (2001)
  6. Buchwald, G. et al. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J. 21, 3286–3295 (2002). (10.1093/emboj/cdf329) / EMBO J. by G Buchwald (2002)
  7. Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221–228 (2000). (10.1016/S0092-8674(00)81560-3) / Cell by D Raucher (2000)
  8. Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol. 4, 766–773 (2002). (10.1038/ncb854) / Nature Cell Biol. by MR Terebiznik (2002)
  9. Fu, Y. & Galán, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999). (10.1038/45829) / Nature by Y Fu (1999)
  10. Murli, S., Watson, R. O. & Galán, J. E. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell. Microbiol. 3, 795–810 (2001). (10.1046/j.1462-5822.2001.00158.x) / Cell. Microbiol. by S Murli (2001)
  11. Carlson, S. A., Omary, M. B. & Jones, B. D. Identification of cytokeratins as accessory mediators of Salmonella entry into eukaryotic cells. Life Sci. 70, 1415–1426 (2002). (10.1016/S0024-3205(01)01512-0) / Life Sci. by SA Carlson (2002)
  12. Tran Van Nhieu, G., Bourdet-Sicard, R., Duménil, G., Blocker, A. & Sansonetti, P. J. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol. 2, 187–193 (2000). (10.1046/j.1462-5822.2000.00046.x) / Cell. Microbiol. by G Tran Van Nhieu (2000)
  13. Niebuhr, K. et al. Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002). (10.1093/emboj/cdf522) / EMBO J. by K Niebuhr (2002)
  14. Yoshida, S. et al. Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21, 2923–2935 (2002). (10.1093/emboj/cdf319) / EMBO J. by S Yoshida (2002)
  15. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999). (10.1038/9018) / Nature Cell Biol. by CM Waterman-Storer (1999)
  16. Smith, G. A. & Enquist, L. W. BREAK INS AND BREAK OUTS: viral interactions with the cytoskeleton of mammalian cells. Annu. Rev. Cell Dev. Biol. 18, 135–161 (2002). (10.1146/annurev.cellbio.18.012502.105920) / Annu. Rev. Cell Dev. Biol. by GA Smith (2002)
  17. Nemerow, G. R. & Cheresh, D. A. Herpesvirus hijacks an integrin. Nature Cell Biol. 4, E69–E71 (2002). (10.1038/ncb0402-e69) / Nature Cell Biol. by GR Nemerow (2002)
  18. Schmid, S. L. & Sorkin, A. D. Days and knights discussing membrane dynamics in endocytosis: meeting report from the Euresco/EMBL Membrane Dynamics in Endocytosis, 6–11 October in Tomar, Portugal. Traffic 3, 77–85 (2002). (10.1046/j.1398-9219.2001.00001.x) / Traffic by SL Schmid (2002)
  19. van der Goot, F. G. & Harder, T. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin. Immunol. 13, 89–97 (2001). (10.1006/smim.2000.0300) / Semin. Immunol. by FG van der Goot (2001)
  20. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001). (10.1038/35074539) / Nature Cell Biol. by L Pelkmans (2001)
  21. Sibley, L. D. & Andrews, N. W. Cell invasion by un-palatable parasites. Traffic 1, 100–106 (2000). (10.1034/j.1600-0854.2000.010202.x) / Traffic by LD Sibley (2000)
  22. Cowman, A. F. & Crabb, B. S. The Plasmodium falciparum genome—a blueprint for erythrocyte invasion. Science 298, 126–128 (2002). (10.1126/science.1078169) / Science by AF Cowman (2002)
  23. Elliott, D. A. et al. Cryptosporidium parvum infection requires host cell actin polymerization. Infect. Immun. 69, 5940–5942 (2001). (10.1128/IAI.69.9.5940-5942.2001) / Infect. Immun. by DA Elliott (2001)
  24. Tan, H. & Andrews, N. W. Don't bother to knock—the cell invasion strategy of Trypanosoma cruzi. Trends Parasitol. 18, 427–428 (2002). (10.1016/S1471-4922(02)02368-1) / Trends Parasitol. by H Tan (2002)
  25. Méresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, E183–E188 (1999). (10.1038/15620) / Nature Cell Biol. by S Méresse (1999)
  26. Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y. & Finlay, B. B. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl Acad. Sci. USA 90, 10544–10548 (1993). (10.1073/pnas.90.22.10544) / Proc. Natl Acad. Sci. USA by F Garcia-del Portillo (1993)
  27. Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F. & Finlay, B. B. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20, 151–164 (1996). (10.1111/j.1365-2958.1996.tb02497.x) / Mol. Microbiol. by MA Stein (1996)
  28. Brumell, J. H., Rosenberger, C. M., Gotto, G. T., Marcus, S. L. & Finlay, B. B. SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell. Microbiol. 3, 75–84 (2001). (10.1046/j.1462-5822.2001.00087.x) / Cell. Microbiol. by JH Brumell (2001)
  29. Beuzón, C. R. et al. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19, 3235–3249 (2000). (10.1093/emboj/19.13.3235) / EMBO J. by CR Beuzón (2000)
  30. Ruiz-Albert, J. et al. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol. Microbiol. 44, 645–661 (2002). (10.1046/j.1365-2958.2002.02912.x) / Mol. Microbiol. by J Ruiz-Albert (2002)
  31. Brumell, J. H., Goosney, D. L. & Finlay, B. B. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3, 407–415 (2002). (10.1034/j.1600-0854.2002.30604.x) / Traffic by JH Brumell (2002)
  32. Méresse, S. et al. Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell. Microbiol. 3, 567–577 (2001). (10.1046/j.1462-5822.2001.00141.x) / Cell. Microbiol. by S Méresse (2001)
  33. Lesnick, M. L., Reiner, N. E., Fierer, J. & Guiney, D. G. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol. Microbiol. 39, 1464–1470 (2001). (10.1046/j.1365-2958.2001.02360.x) / Mol. Microbiol. by ML Lesnick (2001)
  34. Taunton, J. Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr. Opin. Cell Biol. 13, 85–91 (2001). (10.1016/S0955-0674(00)00178-2) / Curr. Opin. Cell Biol. by J Taunton (2001)
  35. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000). (10.1016/S0960-9822(00)00384-5) / Curr. Biol. by AL Rozelle (2000)
  36. Catron, D. M. et al. The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cell. Microbiol. 4, 315–328 (2002). (10.1046/j.1462-5822.2002.00198.x) / Cell. Microbiol. by DM Catron (2002)
  37. Muallem, S., Kwiatkowska, K., Xu, X. & Yin, H. L. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J. Cell Biol. 128, 589–598 (1995). (10.1083/jcb.128.4.589) / J. Cell Biol. by S Muallem (1995)
  38. Vazquez-Torres, A. et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658 (2000). (10.1126/science.287.5458.1655) / Science by A Vazquez-Torres (2000)
  39. Guerin, I. & de Chastellier, C. Pathogenic mycobacteria disrupt the macrophage actin filament network. Infect. Immun. 68, 2655–2662 (2000). (10.1128/IAI.68.5.2655-2662.2000) / Infect. Immun. by I Guerin (2000)
  40. Guerin, I. & de Chastellier, C. Disruption of the actin filament network affects delivery of endocytic contents marker to phagosomes with early endosome characteristics: the case of phagosomes with pathogenic mycobacteria. Eur. J. Cell Biol. 79, 735–749 (2000). (10.1078/0171-9335-00092) / Eur. J. Cell Biol. by I Guerin (2000)
  41. Ferrari, G., Langen, H., Naito, M. & Pieters, J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97, 435–447 (1999). (10.1016/S0092-8674(00)80754-0) / Cell by G Ferrari (1999)
  42. Russell, D. G., Mwandumba, H. C. & Rhoades, E. E. Mycobacterium and the coat of many lipids. J. Cell Biol. 158, 421–426 (2002). (10.1083/jcb.200205034) / J. Cell Biol. by DG Russell (2002)
  43. Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001). (10.1016/S0962-8924(00)01871-7) / Trends Cell Biol. by F Frischknecht (2001)
  44. Goldberg, M. B. Actin-based motility of intracellular microbial pathogens. Microbiol. Mol. Biol. Rev. 65, 595–626 (2001). (10.1128/MMBR.65.4.595-626.2001) / Microbiol. Mol. Biol. Rev. by MB Goldberg (2001)
  45. Caron, E. Regulation of Wiskott-Aldrich syndrome protein and related molecules. Curr. Opin. Cell Biol. 14, 82–87 (2002). (10.1016/S0955-0674(01)00298-8) / Curr. Opin. Cell Biol. by E Caron (2002)
  46. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999). (10.1038/44860) / Nature by F Frischknecht (1999)
  47. Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol. 3, 856–859 (2001). (10.1038/ncb0901-856) / Nature Cell Biol. by S Gruenheid (2001)
  48. Gouin, E. et al. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112, 1697–1708 (1999). (10.1242/jcs.112.11.1697) / J. Cell Sci. by E Gouin (1999)
  49. Moss, B. & Ward, B. M. High-speed mass transit for poxviruses on microtubules. Nature Cell Biol. 3, E245–E246 (2001). (10.1038/ncb1101-e245) / Nature Cell Biol. by B Moss (2001)
  50. Sears, C. L. Molecular physiology and pathophysiology of tight junctions V. Assault of the tight junction by enteric pathogens. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G1129–G1134 (2000). (10.1152/ajpgi.2000.279.6.G1129) / Am. J. Physiol. Gastrointest. Liver Physiol. by CL Sears (2000)
  51. Tsukita, S., Furuse, M. & Itoh, M. Multifunctional strands in tight junctions. Nature Rev. Mol. Cell Biol. 2, 285–293 (2001). (10.1038/35067088) / Nature Rev. Mol. Cell Biol. by S Tsukita (2001)
  52. Steele-Mortimer, O., Knodler, L. A. & Finlay, B. B. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton. Traffic 1, 107–118 (2000). (10.1034/j.1600-0854.2000.010203.x) / Traffic by O Steele-Mortimer (2000)
  53. Yuhan, R., Koutsouris, A., Savkovic, S. D. & Hecht, G. Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113, 1873–1882 (1997). (10.1016/S0016-5085(97)70006-4) / Gastroenterology by R Yuhan (1997)
  54. Simonovic, I., Arpin, M., Koutsouris, A., Falk-Krzesinski, H. J. & Hecht, G. Enteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function. Infect. Immun. 69, 5679–5688 (2001). (10.1128/IAI.69.9.5679-5688.2001) / Infect. Immun. by I Simonovic (2001)
  55. Simonovic, I., Rosenberg, J., Koutsouris, A. & Hecht, G. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell. Microbiol. 2, 305–315 (2000). (10.1046/j.1462-5822.2000.00055.x) / Cell. Microbiol. by I Simonovic (2000)
  56. Philpott, D. J., McKay, D. M., Sherman, P. M. & Perdue, M. H. Infection of T84 cells with enteropathogenic Escherichia coli alters barrier and transport functions. Am. J. Physiol. 270, G634–G645 (1996). / Am. J. Physiol. by DJ Philpott (1996)
  57. Goosney, D. L., DeVinney, R. & Finlay, B. B. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69, 3315–3322 (2001). (10.1128/IAI.69.5.3315-3322.2001) / Infect. Immun. by DL Goosney (2001)
  58. Speck, O., Hughes, S. C., Noren, N. K., Kulikauskas, R. M. & Fehon, R. G. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421, 83–87 (2003). (10.1038/nature01295) / Nature by O Speck (2003)
  59. McNamara, B. P. et al. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107, 621–629 (2001). (10.1172/JCI11138) / J. Clin. Invest. by BP McNamara (2001)
  60. Cornelis, G. R. Yersinia type III secretion: send in the effectors. J. Cell Biol. 158, 401–408 (2002). (10.1083/jcb.200205077) / J. Cell Biol. by GR Cornelis (2002)
  61. Grosdent, N., Maridonneau-Parini, I., Sory, M. P. & Cornelis, G. R. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect. Immun. 70, 4165–4176 (2002). (10.1128/IAI.70.8.4165-4176.2002) / Infect. Immun. by N Grosdent (2002)
  62. Zhang, Z. Y. et al. Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase. J. Biol. Chem. 267, 23759–23766 (1992). (10.1016/S0021-9258(18)35903-9) / J. Biol. Chem. by ZY Zhang (1992)
  63. Celli, J. & Finlay, B. B. Bacterial avoidance of phagocytosis. Trends Microbiol. 10, 232–237 (2002). (10.1016/S0966-842X(02)02343-0) / Trends Microbiol. by J Celli (2002)
  64. Bruce-Staskal, P. J., Weidow, C. L., Gibson, J. J. & Bouton, A. H. Cas, Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake. J. Cell Sci. 115, 2689–2700 (2002). (10.1242/jcs.115.13.2689) / J. Cell Sci. by PJ Bruce-Staskal (2002)
  65. Greenberg, S., Chang, P. & Silverstein, S. C. Tyrosine phosphorylation of the γ subunit of Fcγ receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J. Biol. Chem. 269, 3897–3902 (1994). (10.1016/S0021-9258(17)41945-4) / J. Biol. Chem. by S Greenberg (1994)
  66. Allen, L. A. & Aderem, A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184, 627–637 (1996). (10.1084/jem.184.2.627) / J. Exp. Med. by LA Allen (1996)
  67. Griffiths, E. K. & Penninger, J. M. Communication between the TCR and integrins: role of the molecular adapter ADAP/Fyb/Slap. Curr. Opin. Immunol. 14, 317–322 (2002). (10.1016/S0952-7915(02)00334-5) / Curr. Opin. Immunol. by EK Griffiths (2002)
  68. Coppolino, M. G. et al. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcγ receptor signalling during phagocytosis. J. Cell Sci. 114, 4307–4318 (2001). (10.1242/jcs.114.23.4307) / J. Cell Sci. by MG Coppolino (2001)
  69. Fallman, M. et al. Yersinia pseudotuberculosis inhibits Fc receptor-mediated phagocytosis in J774 cells. Infect. Immun. 63, 3117–3124 (1995). (10.1128/iai.63.8.3117-3124.1995) / Infect. Immun. by M Fallman (1995)
  70. McGee, K., Zettl, M., Way, M. & Fallman, M. A role for N-WASP in invasin-promoted internalisation. FEBS Lett. 509, 59–65 (2001). (10.1016/S0014-5793(01)03139-8) / FEBS Lett. by K McGee (2001)
  71. Black, D. S. & Bliska, J. B. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37, 515–527 (2000). (10.1046/j.1365-2958.2000.02021.x) / Mol. Microbiol. by DS Black (2000)
  72. Andor, A. et al. YopE of Yersinia, a GAP for Rho GTPases, selectively modulates Rac-dependent actin structures in endothelial cells. Cell. Microbiol. 3, 301–310 (2001). (10.1046/j.1462-5822.2001.00114.x) / Cell. Microbiol. by A Andor (2001)
  73. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002). (10.1016/S0092-8674(02)00766-3) / Cell by F Shao (2002)
Dates
Type When
Created 22 years, 4 months ago (April 16, 2003, 12:38 p.m.)
Deposited 4 months, 4 weeks ago (April 4, 2025, 6:53 p.m.)
Indexed 1 month, 1 week ago (July 22, 2025, 6:37 a.m.)
Issued 22 years, 4 months ago (April 17, 2003)
Published 22 years, 4 months ago (April 17, 2003)
Published Print 22 years, 4 months ago (April 17, 2003)
Funders 0

None