Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Sali, A., Glaeser, R., Earnest, T., & Baumeister, W. (2003). From words to literature in structural proteomics. Nature, 422(6928), 216–225.

Authors 4
  1. Andrej Sali (first)
  2. Robert Glaeser (additional)
  3. Thomas Earnest (additional)
  4. Wolfgang Baumeister (additional)
References 99 Referenced 399
  1. Alberts, B. The cell as a collection of protein machines — preparing the next generation of molecular biologists. Cell 92, 291–294 (1998). (10.1016/S0092-8674(00)80922-8) / Cell by B Alberts (1998)
  2. Baumeister, W. & Steven, A. C. Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25, 624–631 (2000). (10.1016/S0968-0004(00)01720-5) / Trends Biochem. Sci. by W Baumeister (2000)
  3. Sali, A. & Kuriyan, J. Challenges at the frontiers of structural biology. Trends Biochem. Sci. 24, M20–M24 (1999). (10.1016/S0968-0004(99)01494-2) / Trends Biochem. Sci. by A Sali (1999)
  4. Orengo, C. A. et al. The CATH protein family database: a resource for structural and functional annotation of genomes. Proteomics 2, 11–21 (2002). (10.1002/1615-9861(200201)2:1<11::AID-PROT11>3.0.CO;2-T) / Proteomics by CA Orengo (2002)
  5. Govindarajan, S., Recabarren, R. & Goldstein, R. A. Estimating the total number of protein folds. Proteins 35, 408–414 (1999). (10.1002/(SICI)1097-0134(19990601)35:4<408::AID-PROT4>3.0.CO;2-A) / Proteins by S Govindarajan (1999)
  6. Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O. & Eisenberg, D. A combined algorithm for genome-wide prediction of protein function. Nature 402, 83–86 (1999). (10.1038/47048) / Nature by EM Marcotte (1999)
  7. Mewes, H. W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34 (2002). (10.1093/nar/30.1.31) / Nucleic Acids Res. by HW Mewes (2002)
  8. Costanzo, M. C. et al. YPD, PombePD and WormPD: model org anism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res. 29, 75–79 (2001). (10.1093/nar/29.1.75) / Nucleic Acids Res. by MC Costanzo (2001)
  9. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002). (10.1038/nature750) / Nature by C von Mering (2002)
  10. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001). (10.1073/pnas.061034498) / Proc. Natl Acad. Sci. USA by T Ito (2001)
  11. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000). (10.1038/35001009) / Nature by P Uetz (2000)
  12. Aloy, P. & Russell, R. B. Potential artefacts in protein-interaction networks. FEBS Lett. 530, 253–254 (2002). (10.1016/S0014-5793(02)03427-0) / FEBS Lett. by P Aloy (2002)
  13. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002). (10.1038/415141a) / Nature by AC Gavin (2002)
  14. Aloy, P. & Russell, R. B. The third dimension for protein interactions and complexes. Trends Biochem. Sci. 27, 633–638 (2002). (10.1016/S0968-0004(02)02204-1) / Trends Biochem. Sci. by P Aloy (2002)
  15. Jansen, R., Greenbaum, D. & Gerstein, M. Relating whole-genome expression data with protein-protein interactions. Genome Res. 2, 37–46 (2002). (10.1101/gr.205602) / Genome Res. by R Jansen (2002)
  16. Ge, H., Liu, Z., Church, G. M. & Vidal, M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genet. 4, 482–486 (2001). (10.1038/ng776) / Nature Genet. by H Ge (2001)
  17. Edwards, A. M. et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet. 10, 529–536 (2002). (10.1016/S0168-9525(02)02763-4) / Trends Genet. by AM Edwards (2002)
  18. Kumar, A. & Snyder, M. Protein complexes take the bait. Nature 415, 123–124 (2002). (10.1038/415123a) / Nature by A Kumar (2002)
  19. Abbott, A. The society of proteins. Nature 417, 894–896 (2002). (10.1038/417894a) / Nature by A Abbott (2002)
  20. Westbrook, J. et al. The Protein Data Bank: unifying the archive. Nucleic Acids Res. 30, 245–248 (2002). (10.1093/nar/30.1.245) / Nucleic Acids Res. by J Westbrook (2002)
  21. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292, 1863–1876 (2001). (10.1126/science.1059493) / Science by P Cramer (2001)
  22. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000). (10.1126/science.289.5481.905) / Science by N Ban (2000)
  23. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001). (10.1016/S0092-8674(01)00546-3) / Cell by J Harms (2001)
  24. Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000). (10.1038/35030006) / Nature by BT Wimberly (2000)
  25. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001). (10.1126/science.1060089) / Science by MM Yusupov (2001)
  26. Abola, E., Kuhn, P., Earnest, T. & Stevens, R. C. Automation of X-ray crystallography. Nature Struct. Biol. 7, 973–977 (2000). (10.1038/80754) / Nature Struct. Biol. by E Abola (2000)
  27. Snell, G. et al. Automatic sample mounting and alignment system for biological crystallography. J. Synchrotron Radiat. (in the press).
  28. Burley, S. K. et al. Structural genomics: beyond the Human Genome Project. Nature Genet. 23, 151–157 (1999). (10.1038/13783) / Nature Genet. by SK Burley (1999)
  29. Vitkup, D., Melamud, E., Moult, J. & Sander, C. Completeness in structural genomics. Nature Struct. Biol. 8, 559–566 (2001). (10.1038/88640) / Nature Struct. Biol. by D Vitkup (2001)
  30. Structural genomics. Nature Struct. Biol. 7 (Suppl.), 927–994 (2000). (10.1038/80689)
  31. Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies (Academic, London, 1996). / Three-dimensional Electron Microscopy of Macromolecular Assemblies by J Frank (1996)
  32. Henderson, R., Baldwin, J. M. & Ceska, T. A. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990). (10.1016/S0022-2836(05)80271-2) / J. Mol. Biol. by R Henderson (1990)
  33. Kuhlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994). (10.1038/367614a0) / Nature by W Kuhlbrandt (1994)
  34. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996). (10.1006/jmbi.1996.0328) / J. Mol. Biol. by N Grigorieff (1996)
  35. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998). (10.1038/34465) / Nature by E Nogales (1998)
  36. Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol. 286, 861–882 (1999). (10.1006/jmbi.1998.2529) / J. Mol. Biol. by K Mitsuoka (1999)
  37. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000). (10.1038/35036519) / Nature by K Murata (2000)
  38. Lowe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001). (10.1006/jmbi.2001.5077) / J. Mol. Biol. by J Lowe (2001)
  39. Conway, J. F. et al. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386, 91–94 (1997). (10.1038/386091a0) / Nature by JF Conway (1997)
  40. Bottcher, B., Wynne, S. A. & Crowther, R. A. Determination of the fold of the core protein of hepatitis B virus by cryo-electron microscopy. Nature 386, 88–91 (1997). (10.1038/386088a0) / Nature by B Bottcher (1997)
  41. Li, H. L., DeRosier, D. J., Nicholson, W. V., Nogales, E. & Downing, K. H. Microtubule structure at 8 Å resolution. Structure 10, 1317–1328 (2002). (10.1016/S0969-2126(02)00827-4) / Structure by HL Li (2002)
  42. Rockel, B., Peters, J., Kuhlmorgen, B., Glaeser, R. M. & Baumeister, W. A giant protease with a twist: the TPP II complex from Drosophila studied by electron microscopy. EMBO J. 21, 5979–5984 (2002). (10.1093/emboj/cdf601) / EMBO J. by B Rockel (2002)
  43. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995). (10.1017/S003358350000305X) / Q. Rev. Biophys. by R Henderson (1995)
  44. Carragher, B. et al. Leginon: an automated system for acquisition of images from vitreous ice specimens. J. Struct. Biol 132, 33–45 (2000). (10.1006/jsbi.2000.4314) / J. Struct. Biol by B Carragher (2000)
  45. Zhang, P. J., Beatty, A., Milne, J. L. S. & Subramaniam, S. Automated data collection with a Tecnai 12 electron microscope: applications for molecular imaging by cryomicroscopy. J. Struct. Biol. 135, 251–261 (2001). (10.1006/jsbi.2001.4404) / J. Struct. Biol. by PJ Zhang (2001)
  46. Zhu, Y. X., Carragher, B., Kriegman, D. J., Milligan, R. A. & Potter, C. S. Automated identification of filaments in cryoelectron microscopy images. J. Struct. Biol. 135, 302–312 (2001). (10.1006/jsbi.2001.4415) / J. Struct. Biol. by YX Zhu (2001)
  47. Rossmann, M. G., Bernal, R. & Pletnev, S. V. Combining electron microscopic with X-ray crystallographic structures. J. Struct. Biol. 136, 190–200 (2001). (10.1006/jsbi.2002.4435) / J. Struct. Biol. by MG Rossmann (2001)
  48. Wriggers, W. & Birmanns, S. Using Situs for flexible and rigid-body fitting of multiresolution single-molecule data. J. Struct. Biol. 133, 193–202 (2001). (10.1006/jsbi.2000.4350) / J. Struct. Biol. by W Wriggers (2001)
  49. Volkmann, N. & Hanein, D. Quantitative fitting of atomic models into observed densities derived by electron microscopy. J. Struct. Biol. 125, 176–184 (1999). (10.1006/jsbi.1998.4074) / J. Struct. Biol. by N Volkmann (1999)
  50. Chacon, P. & Wriggers, W. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol. 317, 375–384 (2002). (10.1006/jmbi.2002.5438) / J. Mol. Biol. by P Chacon (2002)
  51. Malhotra, A., Tan, R. K. & Harvey, S. C. Prediction of the three-dimensional structure of Escherichia coli 30S ribosomal subunit: a molecular mechanics approach. Proc. Natl Acad. Sci. USA 87, 1950–1954 (1990). (10.1073/pnas.87.5.1950) / Proc. Natl Acad. Sci. USA by A Malhotra (1990)
  52. Aloy, P. et al. A complex prediction: three-dimensional model of the yeast exosome. EMBO Rep. 3, 628–635 (2002). (10.1093/embo-reports/kvf135) / EMBO Rep. by P Aloy (2002)
  53. Spahn, C. M. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae–tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001). (10.1016/S0092-8674(01)00539-6) / Cell by CM Spahn (2001)
  54. Baumeister, W. Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12, 679–684 (2002). (10.1016/S0959-440X(02)00378-0) / Curr. Opin. Struct. Biol. by W Baumeister (2002)
  55. Baumeister, W., Grimm, R. & Walz, J. Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85 (1999). (10.1016/S0962-8924(98)01423-8) / Trends Cell Biol. by W Baumeister (1999)
  56. Medalia, O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002). (10.1126/science.1076184) / Science by O Medalia (2002)
  57. Grunewald, K., Medalia, O., Gross, A., Steven, A. & Baumeister, W. Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys. Chem. (in press). (10.1016/S0301-4622(02)00307-1)
  58. Bohm, J. et al. Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97, 14245–14250 (2000). (10.1073/pnas.230282097) / Proc. Natl Acad. Sci. USA by J Bohm (2000)
  59. Frangakis, A. S. et al. Identification of macromolecular complexes in electron cryotomograms of phantom cells. Proc. Natl Acad. Sci. USA 99, 14153–14158 (2002). (10.1073/pnas.172520299) / Proc. Natl Acad. Sci. USA by AS Frangakis (2002)
  60. Grimm, R. et al. Electron tomography of ice-embedded prokaryotic cells. Biophys. J. 74, 1031–1042 (1998). (10.1016/S0006-3495(98)74028-7) / Biophys. J. by R Grimm (1998)
  61. Plitzko, J. et al. In vivo veritas: electron cryotomography of cells. Trends Biotechnol. 20, S40–S44 (2002). (10.1016/S0167-7799(02)02017-6) / Trends Biotechnol. by J Plitzko (2002)
  62. Koster, A. J. et al. Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120, 276–308 (1997). (10.1006/jsbi.1997.3933) / J. Struct. Biol. by AJ Koster (1997)
  63. Glaeser, R. M. Electron crystallography: present excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128, 3–14 (1999). (10.1006/jsbi.1999.4172) / J. Struct. Biol. by RM Glaeser (1999)
  64. Zhang, G. Y. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999). (10.1016/S0092-8674(00)81515-9) / Cell by GY Zhang (1999)
  65. Fiaux, J., Bertelsen, E. B., Horwich, A. L. & Wuthrich, K. NMR analysis of a 900K GroEL–GroES complex. Nature 418, 207–211 (2002). (10.1038/nature00860) / Nature by J Fiaux (2002)
  66. Yee, A. et al. An NMR approach to structural proteomics. Proc. Natl Acad. Sci. USA 99, 1825–1830 (2002). (10.1073/pnas.042684599) / Proc. Natl Acad. Sci. USA by A Yee (2002)
  67. Fushman, D., Xu, R. & Cowburn, D. Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). Biochemistry 38, 10225–10230 (1999). (10.1021/bi990897g) / Biochemistry by D Fushman (1999)
  68. Nakanishi, T. et al. Determination of the interface of a large protein complex by transferred cross-saturation measurements. J. Mol. Biol. 318, 245–249 (2002). (10.1016/S0022-2836(02)00018-9) / J. Mol. Biol. by T Nakanishi (2002)
  69. Pellecchia, M., Sem, D. S. & Wuthrich, K. NMR in drug discovery. Nature Rev. Drug Discov. 1, 211–219 (2002). (10.1038/nrd748) / Nature Rev. Drug Discov. by M Pellecchia (2002)
  70. Frank, J. Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31, 303–319 (2002). (10.1146/annurev.biophys.31.082901.134202) / Annu. Rev. Biophys. Biomol. Struct. by J Frank (2002)
  71. Volkmann, N. A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J. Struct. Biol. 138, 123–129 (2002). (10.1016/S1047-8477(02)00009-6) / J. Struct. Biol. by N Volkmann (2002)
  72. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000). (10.1083/jcb.148.4.635) / J. Cell Biol. by MP Rout (2000)
  73. Rappsilber, J., Siniossoglou, S., Hurt, E. C. & Mann, M. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal. Chem. 72, 267–275 (2000). (10.1021/ac991081o) / Anal. Chem. by J Rappsilber (2000)
  74. Young, M. M. et al. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl Acad. Sci. USA 97, 5802–5806 (2000). (10.1073/pnas.090099097) / Proc. Natl Acad. Sci. USA by MM Young (2000)
  75. Neubauer, G. et al. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl Acad. Sci. USA 94, 385–390 (1997). (10.1073/pnas.94.2.385) / Proc. Natl Acad. Sci. USA by G Neubauer (1997)
  76. Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet. 20, 46–50 (1998). (10.1038/1700) / Nature Genet. by G Neubauer (1998)
  77. Houry, W. A., Frishman, D., Eckerskorn, C., Lottspeich, F. & Hartl, F. U. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999). (10.1038/45977) / Nature by WA Houry (1999)
  78. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002). (10.1038/415180a) / Nature by Y Ho (2002)
  79. Miras, I., Schaeffer, F., Beguin, P. & Alzari, P. M. Mapping by site-directed mutagenesis of the region responsible for cohesin-dockerin interaction on the surface of the seventh cohesin domain of Clostridium thermocellum CipA. Biochemistry 41, 2115–2119 (2002). (10.1021/bi011854e) / Biochemistry by I Miras (2002)
  80. Wells, J. A. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol. 202, 390–411 (1991). (10.1016/0076-6879(91)02020-A) / Methods Enzymol. by JA Wells (1991)
  81. Jin, L., Cohen, F. E. & Wells, J. A. Structure from function: screening structural models with functional data. Proc. Natl Acad. Sci. USA 91, 113–117 (1994). (10.1073/pnas.91.1.113) / Proc. Natl Acad. Sci. USA by L Jin (1994)
  82. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995). (10.1126/science.270.5235.467) / Science by M Schena (1995)
  83. Lockhart, D. J. & Winzeler, E. A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000). (10.1038/35015701) / Nature by DJ Lockhart (2000)
  84. Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93–96 (2001). (10.1126/science.1065659) / Science by D Baker (2001)
  85. Bonneau, R. & Baker, D. Ab initio protein structure prediction: progress and prospects. Annu. Rev. Biophys. Biomol. Struct. 30, 173–189 (2001). (10.1146/annurev.biophys.30.1.173) / Annu. Rev. Biophys. Biomol. Struct. by R Bonneau (2001)
  86. Bonneau, R. et al. De novo prediction of three-dimensional structures for major protein families. J. Mol. Biol. 322, 65–78 (2002). (10.1016/S0022-2836(02)00698-8) / J. Mol. Biol. by R Bonneau (2002)
  87. Marti-Renom, M. A. et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000). (10.1146/annurev.biophys.29.1.291) / Annu. Rev. Biophys. Biomol. Struct. by MA Marti-Renom (2000)
  88. Domingues, F. S., Lackner, P., Andreeva, A. & Sippl, M. J. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy. J. Mol. Biol 297, 1003–1013 (2000). (10.1006/jmbi.2000.3615) / J. Mol. Biol by FS Domingues (2000)
  89. Pieper, U., Eswar, N., Stuart, A. C., Ilyin, V. A. & Sali, A. MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res. 30, 255–259 (2002). (10.1093/nar/30.1.255) / Nucleic Acids Res. by U Pieper (2002)
  90. Smith, G. R. & Sternberg, M. J. E. Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol. 12, 28–35 (2002). (10.1016/S0959-440X(02)00285-3) / Curr. Opin. Struct. Biol. by GR Smith (2002)
  91. Strynadka, N. C. J. et al. Molecular docking programs successfully predict the binding of a β-lactamase inhibitory protein to TEM-1 β-lactamase. Nature Struct. Biol. 3, 233–239 (1996). (10.1038/nsb0396-233) / Nature Struct. Biol. by NCJ Strynadka (1996)
  92. Enright, A. J., Iliopoulos, I., Kyrpides, N. C. & Ouzounis, C. A. Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90 (1999). (10.1038/47056) / Nature by AJ Enright (1999)
  93. Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G. D. & Maltsev, N. The use of gene clusters to infer functional coupling. Proc. Natl Acad. Sci. USA 96, 2896–2901 (1999). (10.1073/pnas.96.6.2896) / Proc. Natl Acad. Sci. USA by R Overbeek (1999)
  94. Goh, C. S., Bogan, A. A., Joachimiak, M., Walther, D. & Cohen, F. E. Co-evolution of proteins with their interaction partners. J. Mol. Biol. 299, 283–293 (2000). (10.1006/jmbi.2000.3732) / J. Mol. Biol. by CS Goh (2000)
  95. Pazos, F. & Valencia, A. Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng. 14, 609–614 (2001). (10.1093/protein/14.9.609) / Protein Eng. by F Pazos (2001)
  96. Pazos, F. & Valencia, A. In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47, 219–227 (2002). (10.1002/prot.10074) / Proteins by F Pazos (2002)
  97. Lichtarge, O., Bourne, H. R. & Cohen, F. E. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257, 342–358 (1996). (10.1006/jmbi.1996.0167) / J. Mol. Biol. by O Lichtarge (1996)
  98. Lappe, M., Park, J., Niggemann, O. & Holm, L. Generating protein interaction maps from incomplete data: application to fold assignment. Bioinformatics 17, S149–S156 (2001). (10.1093/bioinformatics/17.suppl_1.S149) / Bioinformatics by M Lappe (2001)
  99. Aloy, P. & Russell, R. B. Interrogating protein interaction networks through structural biology. Proc. Natl Acad. Sci. USA 99, 5896–5901 (2002). (10.1073/pnas.092147999) / Proc. Natl Acad. Sci. USA by P Aloy (2002)
Dates
Type When
Created 22 years, 5 months ago (March 12, 2003, 4:40 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:13 p.m.)
Indexed 3 weeks, 2 days ago (Aug. 7, 2025, 4:52 a.m.)
Issued 22 years, 5 months ago (March 1, 2003)
Published 22 years, 5 months ago (March 1, 2003)
Published Print 22 years, 5 months ago (March 1, 2003)
Funders 0

None

@article{Sali_2003, title={From words to literature in structural proteomics}, volume={422}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature01513}, DOI={10.1038/nature01513}, number={6928}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Sali, Andrej and Glaeser, Robert and Earnest, Thomas and Baumeister, Wolfgang}, year={2003}, month=mar, pages={216–225} }