Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198–207.

Authors 2
  1. Ruedi Aebersold (first)
  2. Matthias Mann (additional)
References 91 Referenced 5,564
  1. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000). (10.1038/35015709) / Nature by A Pandey (2000)
  2. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for the mass spectrometry of large biomolecules. Science 246, 64–71 (1989). (10.1126/science.2675315) / Science by JB Fenn (1989)
  3. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular mass exceeding 10000 daltons. Anal. Chem. 60, 2299–2301 (1988). (10.1021/ac00171a028) / Anal. Chem. by M Karas (1988)
  4. Aebersold, R. & Goodlett, D. R. Mass spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001). (10.1021/cr990076h) / Chem. Rev. by R Aebersold (2001)
  5. Mann, M., Hendrickson, R. C. & Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473 (2001). (10.1146/annurev.biochem.70.1.437) / Annu. Rev. Biochem. by M Mann (2001)
  6. Hager, J. W. A new linear ion trap mass spectrometer. Rapid Commun. Mass. Spectrom. 16, 512–526 (2002). (10.1002/rcm.607) / Rapid Commun. Mass. Spectrom. by JW Hager (2002)
  7. Schwartz, J. C., Senko, M. W. & Syka, J. E. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002). (10.1016/S1044-0305(02)00384-7) / J. Am. Soc. Mass Spectrom. by JC Schwartz (2002)
  8. Marshall, A. G., Hendrickson, C. L. & Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998). (10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K) / Mass Spectrom. Rev. by AG Marshall (1998)
  9. Valaskovic, G. A., Kelleher, N. L. & McLafferty, F. W. Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science 273, 1199–2202 (1996). (10.1126/science.273.5279.1199) / Science by GA Valaskovic (1996)
  10. Martin, S. E., Shabanowitz, J., Hunt, D. F. & Marto, J. A. Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 72, 4266–4274 (2000). (10.1021/ac000497v) / Anal. Chem. by SE Martin (2000)
  11. Lipton, M. S. et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA 99, 11049–11054 (2002). (10.1073/pnas.172170199) / Proc. Natl Acad. Sci. USA by MS Lipton (2002)
  12. Krutchinsky, A. N., Kalkum, M. & Chait, B. T. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal. Chem. 73, 5066–5077 (2001). (10.1021/ac010682o) / Anal. Chem. by AN Krutchinsky (2001)
  13. Medzihradszky, K. F. et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 72, 552–558 (2000). (10.1021/ac990809y) / Anal. Chem. by KF Medzihradszky (2000)
  14. Loboda, A. V., Krutchinsky, A. N., Bromirski, M., Ens, W. & Standing, K. G. A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom. 14, 1047–1057 (2000). (10.1002/1097-0231(20000630)14:12<1047::AID-RCM990>3.0.CO;2-E) / Rapid Commun. Mass Spectrom. by AV Loboda (2000)
  15. Mann, M. & Wilm, M. S. Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994). (10.1021/ac00096a002) / Anal. Chem. by M Mann (1994)
  16. Eng, J. K., McCormack, A. L. & Yates, J. R. I An approach to correlate MS/MS data to amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994). (10.1016/1044-0305(94)80016-2) / J. Am. Soc. Mass Spectrom. by JK Eng (1994)
  17. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999). (10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2) / Electrophoresis by DN Perkins (1999)
  18. Anderson, N. L., Hofmann, J. P., Gemmell, A. & Taylor, J. Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin. Chem. 30, 2031–2036 (1984). (10.1093/clinchem/30.12.2031) / Clin. Chem. by NL Anderson (1984)
  19. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y. & Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl Acad. Sci. USA 97, 9390–9395 (2000). (10.1073/pnas.160270797) / Proc. Natl Acad. Sci. USA by SP Gygi (2000)
  20. Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3–10 (2002). (10.1002/1615-9861(200201)2:1<3::AID-PROT3>3.0.CO;2-R) / Proteomics by T Rabilloud (2002)
  21. Unlu, M., Morgan, M. E. & Minden, J. S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077 (1997). (10.1002/elps.1150181133) / Electrophoresis by M Unlu (1997)
  22. Gauss, C., Kalkum, M., Lowe, M., Lehrach, H. & Klose, J. Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20, 575–600 (1999). (10.1002/(SICI)1522-2683(19990301)20:3<575::AID-ELPS575>3.0.CO;2-3) / Electrophoresis by C Gauss (1999)
  23. Hunt, D. F. et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263 (1992). (10.1126/science.1546328) / Science by DF Hunt (1992)
  24. Wolters, D. A., Washburn, M. P. & Yates, J. R. III An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001). (10.1021/ac010617e) / Anal. Chem. by DA Wolters (2001)
  25. Link, A. J. et al. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol. 17, 676–682 (1999). (10.1038/10890) / Nature Biotechnol. by AJ Link (1999)
  26. Han, D. K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nature Biotechnol. 19, 946–951 (2001). (10.1038/nbt1001-946) / Nature Biotechnol. by DK Han (2001)
  27. Gygi, S. P., Rist, B., Griffin, T. J., Eng, J. & Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res. 1, 47–54 (2002). (10.1021/pr015509n) / J. Proteome Res. by SP Gygi (2002)
  28. Washburn, M. P., Wolters, D. & Yates, J. R. III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001). (10.1038/85686) / Nature Biotechnol. by MP Washburn (2001)
  29. Conrads, T. P., Issaq, H. J. & Veenstra, T. D. New tools for quantitative phosphoproteome analysis. Biochem. Biophys. Res. Commun. 290, 885–890 (2002). (10.1006/bbrc.2001.6275) / Biochem. Biophys. Res. Commun. by TP Conrads (2002)
  30. Mirgorodskaya, O. A. et al. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun. Mass Spectrom. 14, 1226–1232 (2000). (10.1002/1097-0231(20000730)14:14<1226::AID-RCM14>3.0.CO;2-V) / Rapid Commun. Mass Spectrom. by OA Mirgorodskaya (2000)
  31. Yao, X., Freas, A., Ramirez, J., Demirev, P. A. & Fenselau, C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842 (2001). (10.1021/ac001404c) / Anal. Chem. by X Yao (2001)
  32. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999). (10.1038/13690) / Nature Biotechnol. by SP Gygi (1999)
  33. Zhou, H., Ranish, J. A., Watts, J. D. & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nature Biotechnol. 20, 512–515 (2002). (10.1038/nbt0502-512) / Nature Biotechnol. by H Zhou (2002)
  34. Munchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057 (2000). (10.1021/ac000265w) / Anal. Chem. by M Munchbach (2000)
  35. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999). (10.1073/pnas.96.26.14694) / Proc. Natl Acad. Sci. USA by Y Liu (1999)
  36. Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000). (10.1016/S1074-5521(00)00014-4) / Chem. Biol. by D Greenbaum (2000)
  37. Zhou, H., Watts, J. D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nature Biotechnol. 19, 375–378 (2001). (10.1038/86777) / Nature Biotechnol. by H Zhou (2001)
  38. Oda, Y., Nagasu, T. & Chait, B. T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnol. 19, 379–382 (2001). (10.1038/86783) / Nature Biotechnol. by Y Oda (2001)
  39. Zhang, H., Li, X.-J., Martin, D. & Aebersold, R. Quantitative analysis of glycoproteins: applications to serum and membrane proteins. (submitted).
  40. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002). (10.1074/mcp.M200025-MCP200) / Mol. Cell. Proteomics by SE Ong (2002)
  41. Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002). (10.1021/ac025747h) / Anal. Chem. by A Keller (2002)
  42. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. & Gygi, S. P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. DOI: 10.1021/pr025556v (2002). (10.1021/pr025556v)
  43. Oshiro, G. et al. Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res. 12, 1210–1220 (2002). (10.1101/gr.226802) / Genome Res. by G Oshiro (2002)
  44. Kuster, B., Mortensen, P., Andersen, J. S. & Mann, M. Mass spectrometry allows direct identification of proteins in large genomes. Proteomics 1, 641–650 (2001). (10.1002/1615-9861(200104)1:5<641::AID-PROT641>3.0.CO;2-R) / Proteomics by B Kuster (2001)
  45. Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11 (2002). (10.1016/S0960-9822(01)00650-9) / Curr. Biol. by JS Andersen (2002)
  46. Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1, 845–867 (2002). (10.1074/mcp.R200007-MCP200) / Mol. Cell. Proteomics by NL Anderson (2002)
  47. Adkins, J. N. et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics DOI: 10.1074/mcp.M200066-MCP200 (2002). (10.1074/mcp.M200066-MCP200)
  48. Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002). (10.1038/nature01111) / Nature by E Lasonder (2002)
  49. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002). (10.1038/nature01107) / Nature by L Florens (2002)
  50. Shiio, Y. et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21, 5088–5096 (2002). (10.1093/emboj/cdf525) / EMBO J. by Y Shiio (2002)
  51. Griffin, T. J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333 (2002). (10.1074/mcp.M200001-MCP200) / Mol. Cell. Proteomics by TJ Griffin (2002)
  52. Baliga, N. S. et al. Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. Proc. Natl Acad. Sci. USA 99, 14913–14918 (2002). (10.1073/pnas.192558999) / Proc. Natl Acad. Sci. USA by NS Baliga (2002)
  53. Ashman, K., Moran, M. F., Sicheri, F., Pawson, T. & Tyers, M. Cell signalling—the proteomics of it all. Science's STKE 〈 http://stke.sciencemag.org/cgi/content/full/sigtrans;2001/103/pe33 〉 (2001). (10.1126/stke.2001.103.pe33)
  54. Rappsilber, J., Siniossoglou, S., Hurt, E. C. & Mann, M. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal. Chem. 72, 267–275 (2000). (10.1021/ac991081o) / Anal. Chem. by J Rappsilber (2000)
  55. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999). (10.1038/13732) / Nature Biotechnol. by G Rigaut (1999)
  56. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002). (10.1038/415141a) / Nature by AC Gavin (2002)
  57. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002). (10.1038/415180a) / Nature by Y Ho (2002)
  58. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002). (10.1038/nature750) / Nature by C von Mering (2002)
  59. Shevchenko, A., Schaft, D., Roguev, A., Pijnappel, W. W. & Stewart, A. F. Deciphering protein complexes and protein interaction networks by tandem affinity purification and mass spectrometry: analytical perspective. Mol. Cell. Proteomics 1, 204–212 (2002). (10.1074/mcp.M200005-MCP200) / Mol. Cell. Proteomics by A Shevchenko (2002)
  60. Blagoev, B. et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nature Biotechnol. advance online publication, 10 February 2003 (doi:10.1038/nbt790). (10.1038/nbt790)
  61. Ranish, J. A. et al. The study of macromolecular complexes by quantitative proteomics. Nature Genet. (in the press). (10.1038/ng1101)
  62. MacDonald, J. A., Mackey, A. J., Pearson, W. R. & Haystead, T. A. A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. Mol. Cell. Proteomics 1, 314–322 (2002). (10.1074/mcp.M200002-MCP200) / Mol. Cell. Proteomics by JA MacDonald (2002)
  63. Neubauer, G. et al. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl Acad. Sci. USA 94, 385–390 (1997). (10.1073/pnas.94.2.385) / Proc. Natl Acad. Sci. USA by G Neubauer (1997)
  64. Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet. 20, 46–50 (1998). (10.1038/1700) / Nature Genet. by G Neubauer (1998)
  65. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000). (10.1083/jcb.148.4.635) / J. Cell Biol. by MP Rout (2000)
  66. Rappsilber, J., Ryder, U., Lamond, A. I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002). (10.1101/gr.473902) / Genome Res. by J Rappsilber (2002)
  67. Zhou, Z., Licklider, L. J., Gygi, S. P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002). (10.1038/nature01031) / Nature by Z Zhou (2002)
  68. Taylor, S. W., Fahy, E. & Ghosh, S. S. Global organellar proteomics. Trends Biotechnol. 21, 82–88 (2003). (10.1016/S0167-7799(02)00037-9) / Trends Biotechnol. by SW Taylor (2003)
  69. Leung, A. K. & Lamond, A. I. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J. Cell Biol. 157, 615–629 (2002). (10.1083/jcb.200201120) / J. Cell Biol. by AK Leung (2002)
  70. Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002). (10.1016/S0167-7799(02)01944-3) / Trends Biotechnol. by M Mann (2002)
  71. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotechnol. (in the press). (10.1038/nbt0303-255)
  72. MacCoss, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl Acad. Sci. USA 99, 7900–7905 (2002). (10.1073/pnas.122231399) / Proc. Natl Acad. Sci. USA by MJ MacCoss (2002)
  73. Pandey, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl Acad. Sci. USA 97, 179–184 (2000). (10.1073/pnas.97.1.179) / Proc. Natl Acad. Sci. USA by A Pandey (2000)
  74. Steen, H., Kuster, B., Fernandez, M., Pandey, A. & Mann, M. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277, 1031–1039 (2002). (10.1074/jbc.M109992200) / J. Biol. Chem. by H Steen (2002)
  75. Ficarro, S. B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnol. 20, 301–305 (2002). (10.1038/nbt0302-301) / Nature Biotechnol. by SB Ficarro (2002)
  76. Peng, J. & Gygi, S. P. Proteomics: the move to mixtures. J. Mass Spectrom. 36, 1083–1091 (2001). (10.1002/jms.229) / J. Mass Spectrom. by J Peng (2001)
  77. Hanson, C. L., Fucini, P., Ilag, L. L., Nierhaus, K. H. & Robinson, C. V. Dissociation of intact Escherichia coli ribosomes in a mass spectrometer—evidence for conformational change in a ribosome elongation factor G complex. J. Biol. Chem. 278, 1259–1267 (2002). (10.1074/jbc.M208966200) / J. Biol. Chem. by CL Hanson (2002)
  78. Oh, H. et al. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl Acad. Sci. USA 99, 15863–15868 (2002). (10.1073/pnas.212643599) / Proc. Natl Acad. Sci. USA by H Oh (2002)
  79. Cohen, S. L. & Chait, B. T. Mass spectrometry as a tool for protein crystallography. Annu. Rev. Biophys. Biomol. Struct. 30, 67–85 (2001). (10.1146/annurev.biophys.30.1.67) / Annu. Rev. Biophys. Biomol. Struct. by SL Cohen (2001)
  80. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998). (10.1073/pnas.95.25.14863) / Proc. Natl Acad. Sci. USA by MB Eisen (1998)
  81. Aebersold, R. & Watts, J. D. The need for national centers for proteomics. Nature Biotechnol. 20, 651 (2002). (10.1038/nbt0702-651) / Nature Biotechnol. by R Aebersold (2002)
  82. Mann, M. A home for proteomics data? Nature 420, 21 (2002). (10.1038/420021a) / Nature by M Mann (2002)
  83. Petricoin, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002). (10.1016/S0140-6736(02)07746-2) / Lancet by EF Petricoin (2002)
  84. Mørtz, E. et al. Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases. Proc. Natl Acad. Sci. USA 93, 8264–8267 (1996). (10.1073/pnas.93.16.8264) / Proc. Natl Acad. Sci. USA by E Mørtz (1996)
  85. Stoeckli, M., Chaurand, P., Hallahan, D. E. & Caprioli, R. M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nature Med. 7, 493–496 (2001). (10.1038/86573) / Nature Med. by M Stoeckli (2001)
  86. Goodlett, D. R. et al. Protein identification with a single accurate mass of a cysteine-containing peptide and constrained database searching. Anal. Chem. 72, 1112–1118 (2000). (10.1021/ac9913210) / Anal. Chem. by DR Goodlett (2000)
  87. Smith, R. D. et al. An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2, 513–523 (2002). (10.1002/1615-9861(200205)2:5<513::AID-PROT513>3.0.CO;2-W) / Proteomics by RD Smith (2002)
  88. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001). (10.1126/science.292.5518.929) / Science by T Ideker (2001)
  89. Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731 (2002). (10.1046/j.1365-2958.2002.02779.x) / Mol. Microbiol. by JC Betts (2002)
  90. Guina, T. et al. Quantitative proteomic analysis of Pseudomonas aeruginosa indicates synthesis of quinolone signal in adaptation to cystic fibrosis airways. Proc. Natl Acad. Sci. USA (in the press).
  91. Fox, A. H. et al. Paraspeckles. A novel nuclear domain. Curr. Biol. 12, 13–25 (2002). (10.1016/S0960-9822(01)00632-7) / Curr. Biol. by AH Fox (2002)
Dates
Type When
Created 22 years, 5 months ago (March 12, 2003, 4:40 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:13 p.m.)
Indexed 5 hours, 57 minutes ago (Aug. 21, 2025, 12:53 p.m.)
Issued 22 years, 5 months ago (March 1, 2003)
Published 22 years, 5 months ago (March 1, 2003)
Published Print 22 years, 5 months ago (March 1, 2003)
Funders 0

None

@article{Aebersold_2003, title={Mass spectrometry-based proteomics}, volume={422}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature01511}, DOI={10.1038/nature01511}, number={6928}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Aebersold, Ruedi and Mann, Matthias}, year={2003}, month=mar, pages={198–207} }