Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Temelkuran, B., Hart, S. D., Benoit, G., Joannopoulos, J. D., & Fink, Y. (2002). Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 420(6916), 650–653.

Authors 5
  1. Burak Temelkuran (first)
  2. Shandon D. Hart (additional)
  3. Gilles Benoit (additional)
  4. John D. Joannopoulos (additional)
  5. Yoel Fink (additional)
References 30 Referenced 507
  1. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999) (10.1126/science.285.5433.1537) / Science by RF Cregan (1999)
  2. Allan, D. C. et al. Photonic Crystals and Light Localization in the 21st Century (ed. Soukoulis, C. M.) 305–320 (Kluwer, Boston, 2001) (10.1007/978-94-010-0738-2_22) / Photonic Crystals and Light Localization in the 21st Century by DC Allan (2001)
  3. Eggleton, B. J., Kerbage, C., Westbrook, P. S., Windeler, R. S. & Hale, A. Microstructured optical fiber devices. Opt. Express 9, 698–713 (2001) (10.1364/OE.9.000698) / Opt. Express by BJ Eggleton (2001)
  4. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998) (10.1126/science.282.5394.1679) / Science by Y Fink (1998)
  5. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987) (10.1103/PhysRevLett.58.2059) / Phys. Rev. Lett. by E Yablonovitch (1987)
  6. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987) (10.1103/PhysRevLett.58.2486) / Phys. Rev. Lett. by S John (1987)
  7. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, New Jersey, 1995) / Photonic Crystals: Molding the Flow of Light by JD Joannopoulos (1995)
  8. Maurer, R. D. & Schultz, P. C. US Patent 3,659,915 (1972).
  9. Keck, D. B., Maurer, R. D. & Schultz, P. C. On the ultimate lower limit of attenuation in glass optical waveguides. Appl. Phys. Lett. 22, 307–309 (1973) (10.1063/1.1654649) / Appl. Phys. Lett. by DB Keck (1973)
  10. Hilton, A. R. Optical properties of chalcogenide glasses. J. Non-Cryst. Solids 2, 28–39 (1970) (10.1016/0022-3093(70)90118-3) / J. Non-Cryst. Solids by AR Hilton (1970)
  11. Harrington, J. A. Handbook of Optics (ed. Bass, M.) 14.1–14.13 (McGraw-Hill, New York, 2001) / Handbook of Optics by JA Harrington (2001)
  12. Harrington, J. A. A review of IR transmitting, hollow waveguides. Fiber Integr. Opt. 19, 211–227 (2000) (10.1080/01468030050058794) / Fiber Integr. Opt. by JA Harrington (2000)
  13. Mitra, P. P. & Stark, J. B. Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001) (10.1038/35082518) / Nature by PP Mitra (2001)
  14. Renn, M. J. et al. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett. 75, 3253–3256 (1995) (10.1103/PhysRevLett.75.3253) / Phys. Rev. Lett. by MJ Renn (1995)
  15. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998) (10.1126/science.280.5368.1412) / Science by A Rundquist (1998)
  16. Marcatilli, E. A. J. & Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43, 1783–1809 (1964) (10.1002/j.1538-7305.1964.tb04108.x) / Bell Syst. Tech. J. by EAJ Marcatilli (1964)
  17. Miyagi, M. & Kawakami, S. Design theory of dielectric-coated circular metallic waveguides for infrared transmission. J. Lightwave Technol. 2, 116–126 (1984) (10.1109/JLT.1984.1073590) / J. Lightwave Technol. by M Miyagi (1984)
  18. Matsuura, Y., Kasahara, R., Katagiri, T. & Miyagi, M. Hollow infrared fibers fabricated by glass-drawing technique. Opt. Express 10, 488–492 (2002) (10.1364/OE.10.000488) / Opt. Express by Y Matsuura (2002)
  19. Hongo, A., Morosawa, K., Matsumoto, K., Shiota, T. & Hashimoto, T. Transmission of kilowatt-class CO2-laser light through dielectric-coated metallic hollow wave-guides for material processing. Appl. Opt. 31, 5114–5120 (1992) (10.1364/AO.31.005114) / Appl. Opt. by A Hongo (1992)
  20. Bornstein, A. & Croitoru, N. Chalcogenide hollow fibers. J. Non-cryst. Solids 77–78, 1277–1280 (1985) (10.1016/0022-3093(85)90891-9) / J. Non-cryst. Solids by A Bornstein (1985)
  21. Fitt, A. D., Furusawa, K., Monro, T. M. & Please, C. P. Modeling the fabrication of hollow fibers: Capillary drawing. J. Lightwave Technol. 19, 1924–1931 (2001) (10.1109/50.971686) / J. Lightwave Technol. by AD Fitt (2001)
  22. Broeng, J., Barkou, S. E., Søndergaard, T. & Bjarklev, A. Analysis of air-guiding photonic bandgap fibers. Opt. Lett. 25, 96–98 (2000) (10.1364/OL.25.000096) / Opt. Lett. by J Broeng (2000)
  23. Yeh, P., Yariv, A. & Marom, E. Theory of Bragg fiber. J. Opt. Soc. Am. 68, 1196–1201 (1978) (10.1364/JOSA.68.001196) / J. Opt. Soc. Am. by P Yeh (1978)
  24. Ouyang, G., Xu, Y. & Yariv, A. Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics. Opt. Express 9, 733–747 (2001) (10.1364/OE.9.000733) / Opt. Express by G Ouyang (2001)
  25. Ibanescu, M., Fink, Y., Fan, S., Thomas, E. L. & Joannopoulos, J. D. An all-dielectric coaxial waveguide. Science 289, 415–419 (2000) (10.1126/science.289.5478.415) / Science by M Ibanescu (2000)
  26. Johnson, S. G. et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9, 748–779 (2001) (10.1364/OE.9.000748) / Opt. Express by SG Johnson (2001)
  27. Fink, Y. et al. Guiding optical light in air using an all-dielectric structure. J. Lightwave Technol. 17, 2039–2041 (1999) (10.1109/50.802992) / J. Lightwave Technol. by Y Fink (1999)
  28. Hart, S. D. et al. External reflection from omnidirectional dielectric mirror fibers. Science 296, 510–513 (2002) (10.1126/science.1070050) / Science by SD Hart (2002)
  29. Sanghera, J. S. & Aggarwal, I. D. Active and passive chalcogenide glass optical fibers for IR applications: a review. J. Non-cryst. Solids 257, 6–16 (1999) (10.1016/S0022-3093(99)00484-6) / J. Non-cryst. Solids by JS Sanghera (1999)
  30. Bormashenko, E., Pogreb, R., Pogreb, Z. & Sutovski, S. Development of new near-infrared filters based on the “sandwich” polymer-chalcogenide glass-polymer composites. Opt. Eng. 40, 661–662 (2001) (10.1117/1.1360241) / Opt. Eng. by E Bormashenko (2001)
Dates
Type When
Created 22 years, 8 months ago (Dec. 12, 2002, 12:15 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:12 p.m.)
Indexed 6 days, 22 hours ago (Aug. 28, 2025, 8:07 a.m.)
Issued 22 years, 9 months ago (Dec. 1, 2002)
Published 22 years, 9 months ago (Dec. 1, 2002)
Published Print 22 years, 9 months ago (Dec. 1, 2002)
Funders 0

None

@article{Temelkuran_2002, title={Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission}, volume={420}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature01275}, DOI={10.1038/nature01275}, number={6916}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Temelkuran, Burak and Hart, Shandon D. and Benoit, Gilles and Joannopoulos, John D. and Fink, Yoel}, year={2002}, month=dec, pages={650–653} }