Crossref
journal-article
Springer Science and Business Media LLC
Light: Science & Applications (297)
References
122
Referenced
503
-
Fujishima A, Honda K . Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238: 37–38 .
(
10.1038/238037a0
) / Nature by A Fujishima (1972) -
Chen XB, Shen SH, Guo LJ, Mao SS . Semiconductor-based photocatalytic hydrogen generation. Chem Rev 2010; 110: 6503–6570 .
(
10.1021/cr1001645
) / Chem Rev by XB Chen (2010) -
Ismail AA, Bahnemann DW . Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol Energy Mater Sol Cells 2014; 128: 85–101 .
(
10.1016/j.solmat.2014.04.037
) / Sol Energy Mater Sol Cells by AA Ismail (2014) -
Nakata K, Fujishima A . TiO2 photocatalysis: design and applications. J Photochem Photobiol C 2012; 13: 169–189 .
(
10.1016/j.jphotochemrev.2012.06.001
) / J Photochem Photobiol C by K Nakata (2012) -
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001; 293: 269–271 .
(
10.1126/science.1061051
) / Science by R Asahi (2001) -
Dozzi MV, Selli E . Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C 2013; 14: 13–28 .
(
10.1016/j.jphotochemrev.2012.09.002
) / J Photochem Photobiol C by MV Dozzi (2013) -
Hoffmann MR, Martin ST, Choi W, Bahnemann DW . Environmental applications of semiconductor photocatalysis. Chem Rev 1995; 95: 69–96 .
(
10.1021/cr00033a004
) / Chem Rev by MR Hoffmann (1995) -
Wang SB, Pan L, Song JJ, Mi WB, Zou JJ et al. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 2015; 137: 2975–2983 .
(
10.1021/ja512047k
) / J Am Chem Soc by SB Wang (2015) -
Yang KS, Dai Y, Huang BB, Whangbo MH . Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem Mater 2008; 20: 6528–6534 .
(
10.1021/cm801741m
) / Chem Mater by KS Yang (2008) -
Ma XC, Dai Y, Huang BB . Origin of the increased photocatalytic performance of TiO2 nanocrystal composed of pure core and heavily nitrogen-doped shell: a theoretical study. ACS Appl Mater Interfaces 2014; 6: 22815–22822 .
(
10.1021/am506968h
) / ACS Appl Mater Interfaces by XC Ma (2014) -
Odobel F, Pellegrin Y . Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications. J Phys Chem Lett 2013; 4: 2551–2564 .
(
10.1021/jz400861v
) / J Phys Chem Lett by F Odobel (2013) -
Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 2012; 125: 331–349 .
(
10.1016/j.apcatb.2012.05.036
) / Appl Catal B by M Pelaez (2012) -
Serpone N, Emeline AV . Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 2012; 3: 673–677 .
(
10.1021/jz300071j
) / J Phys Chem Lett by N Serpone (2012) -
Ma XC, Dai Y, Guo M, Huang BB . Insights into the role of surface distortion in promoting the separation and transfer of photogenerated carriers in anatase TiO2. J Phys Chem C 2013; 117: 24496–24502 .
(
10.1021/jp4092706
) / J Phys Chem C by XC Ma (2013) -
Chen XB, Liu L, Yu PY, Mao SS . Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011; 331: 746–750 .
(
10.1126/science.1200448
) / Science by XB Chen (2011) -
Liu L, Yu PY, Chen XB, Mao SS, Shen DZ . Hydrogenation and disorder in engineered black TiO2. Phys Rev Lett 2013; 111: 065505 .
(
10.1103/PhysRevLett.111.065505
) / Phys Rev Lett by L Liu (2013) -
Lu JB, Dai Y, Jin H, Huang BB . Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation. Phys Chem Chem Phys 2011; 13: 18063–18068 .
(
10.1039/c1cp22726b
) / Phys Chem Chem Phys by JB Lu (2011) -
Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 2008; 130: 1676–1680 .
(
10.1021/ja076503n
) / J Am Chem Soc by K Awazu (2008) -
Wang P, Huang BB, Qin XY, Zhang XY, Dai Y et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 2008; 47: 7931–7933 .
(
10.1002/anie.200802483
) / Angew Chem Int Ed by P Wang (2008) -
Li XN, Ju Z, Li F, Huang Y, Xie YM et al. Visible light responsive Bi7Fe3Ti3O21 nanoshelf photocatalysts with ferroelectricity and ferromagnetism. J Mater Chem A 2014; 2: 13366–13372 .
(
10.1039/C4TA01799D
) / J Mater Chem A by XN Li (2014) -
Wang WJ, Huang BB, Ma XC, Wang ZY, Qin XY et al. Efficient separation of photogenerated electron-hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates. Chem Eur J 2013; 19: 14777–14780 .
(
10.1002/chem.201302884
) / Chem Eur J by WJ Wang (2013) -
Zhang R, Dai Y, Lou ZZ, Li ZJ, Wang ZY et al. Layered photocatalyst Bi2O2[BO2(OH)] nanosheets with internal polar field enhanced photocatalytic activity. Cryst Eng Comm 2014; 16: 4931–4934 .
(
10.1039/C4CE00162A
) / Cryst Eng Comm by R Zhang (2014) -
Batzill M . Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ Sci 2011; 4: 3275–3286 .
(
10.1039/c1ee01577j
) / Energy Environ Sci by M Batzill (2011) -
Xiang QJ, Yu JG, Jaroniec M . Graphene-based semiconductor photocatalysts. Chem Soc Rev 2012; 41: 782–796 .
(
10.1039/C1CS15172J
) / Chem Soc Rev by QJ Xiang (2012) -
Xiang QJ, Yu JG . Graphene-based photocatalysts for hydrogen generation. J Phys Chem Lett 2013; 4: 753–759 .
(
10.1021/jz302048d
) / J Phys Chem Lett by QJ Xiang (2013) -
Linic S, Christopher P, Ingram DB . Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 2011; 10: 911–921 .
(
10.1038/nmat3151
) / Nat Mater by S Linic (2011) -
Clavero C . Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 2014; 8: 95–103 .
(
10.1038/nphoton.2013.238
) / Nat Photon by C Clavero (2014) -
Cheng HF, Fuku K, Kuwahara Y, Mori K, Yamashita H . Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J Mater Chem A 2015; 3: 5244–5258 .
(
10.1039/C4TA06484D
) / J Mater Chem A by HF Cheng (2015) - Lou ZZ, Wang ZY, Huang BB, Dai Y . Synthesis and activity of plasmonic photocatalysts. Chem Cat Chem 2014; 6: 2456–2476 . / Chem Cat Chem by ZZ Lou (2014)
-
Zhang XM, Chen YL, Liu RS, Tsai DP . Plasmonic photocatalysis. Rep Prog Phys 2013; 76: 046401 .
(
10.1088/0034-4885/76/4/046401
) / Rep Prog Phys by XM Zhang (2013) -
Wang P, Huang BB, Dai Y, Whangbo MH . Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 2012; 14: 9813–9825 .
(
10.1039/c2cp40823f
) / Phys Chem Chem Phys by P Wang (2012) -
Hou WB, Cronin SB . A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 2013; 23: 1612–1619 .
(
10.1002/adfm.201202148
) / Adv Funct Mater by WB Hou (2013) -
Jiang RB, Li BX, Fang CH, Wang JF . Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater 2014; 26: 5274–5309 .
(
10.1002/adma.201400203
) / Adv Mater by RB Jiang (2014) -
Brongersma ML, Halas NJ, Nordlander P . Plasmon-induced hot carrier science and technology. Nat Nano 2015; 10: 25–34 .
(
10.1038/nnano.2014.311
) / Nat Nano by ML Brongersma (2015) -
Ma XC, Dai Y, Yu L, Huang BB . Noble-metal-free plasmonic photocatalyst: hydrogen doped semiconductors. Sci Rep 2014; 4: 3986 .
(
10.1038/srep03986
) / Sci Rep by XC Ma (2014) -
Wang Z, Yang CY, Lin TQ, Yin H, Chen P et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 2013; 23: 5444–5450 .
(
10.1002/adfm.201300486
) / Adv Funct Mater by Z Wang (2013) -
Zheng ZK, Huang BB, Qin XY, Zhang XY, Dai Y et al. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 2011; 21: 9079–9087 .
(
10.1039/c1jm10983a
) / J Mater Chem by ZK Zheng (2011) -
Yang D, Sun YY, Tong ZW, Tian Y, Li YB et al. Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J Phys Chem C 2015; 119: 5827–5835 .
(
10.1021/jp511948p
) / J Phys Chem C by D Yang (2015) -
Wang XT, Liow C, Qi DP, Zhu BW, Leow WR et al. Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv Mater 2014; 26: 3506–3512 .
(
10.1002/adma.201306201
) / Adv Mater by XT Wang (2014) -
Solarska R, Bienkowski K, Zoladek S, Majcher A, Stefaniuk T et al. Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold-polyoxometalate particles. Angew Chem 2014; 53: 14196–14200 .
(
10.1002/anie.201408374
) / Angew Chem by R Solarska (2014) -
Sellappan R, Nielsen MG, González-Posada F, Vesborg PCK, Chorkendorff I et al. Effects of plasmon excitation on photocatalytic activity of Ag/TiO2 and Au/TiO2 nanocomposites. J Catal 2013; 307: 214–221 .
(
10.1016/j.jcat.2013.07.024
) / J Catal by R Sellappan (2013) -
Christopher P, Ingram DB, Linic S . Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J Phys Chem C 2010; 114: 9173–9177 .
(
10.1021/jp101633u
) / J Phys Chem C by P Christopher (2010) -
Zhang L, Blom DA, Wang H . Au-Cu2O core-shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem Mater 2011; 23: 4587–4598 .
(
10.1021/cm202078t
) / Chem Mater by L Zhang (2011) -
Yu KF, Tian Y, Tatsuma T . Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold-TiO2 nanocomposites. Phys Chem Chem Phys 2006; 8: 5417–5420 .
(
10.1039/B610720F
) / Phys Chem Chem Phys by KF Yu (2006) -
Torimoto T, Horibe H, Kameyama T, Okazaki K, Ikeda S et al. Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J Phys Chem Lett 2011; 2: 2057–2062 .
(
10.1021/jz2009049
) / J Phys Chem Lett by T Torimoto (2011) -
Thomann I, Pinaud BA, Chen ZB, Clemens BM, Jaramillo TF et al. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett 2011; 11: 3440–3446 .
(
10.1021/nl201908s
) / Nano Lett by I Thomann (2011) -
Shi XW, Ji YL, Hou S, Liu WQ, Zhang H et al. Plasmon enhancement effect in Au gold nanorods@Cu2O core-shell nanostructures and their use in probing defect states. Langmuir 2015; 31: 1537–1546 .
(
10.1021/la503988e
) / Langmuir by XW Shi (2015) -
Seh ZW, Liu SH, Low M, Zhang SY, Liu ZL et al. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 2012; 24: 2310–2314 .
(
10.1002/adma.201104241
) / Adv Mater by ZW Seh (2012) -
Ren ST, Wang BY, Zhang H, Ding P, Wang Q . Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts. ACS Appl Mater Interfaces 2015; 7: 4066–4074 .
(
10.1021/am507813g
) / ACS Appl Mater Interfaces by ST Ren (2015) -
Ma X, Zhao K, Tang HJ, Chen Y, Lu CG et al. New insight into the role of gold nanoparticles in Au@CdS core-shell nanostructures for hydrogen evolution. Small 2014; 10: 4664–4670 .
(
10.1002/smll.201401494
) / Small by X Ma (2014) -
Mubeen S, Lee J, Singh N, Krämer S, Stucky GD et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nano 2013; 8: 247–251 .
(
10.1038/nnano.2013.18
) / Nat Nano by S Mubeen (2013) -
Long R, Prezhdo OV . Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J Am Chem Soc 2014; 136: 4343–4354 .
(
10.1021/ja5001592
) / J Am Chem Soc by R Long (2014) -
Liu LQ, Ouyang SX, Ye JH . Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. Angew Chem Int Ed 2013; 52: 6689–6693 .
(
10.1002/anie.201300239
) / Angew Chem Int Ed by LQ Liu (2013) -
Fan XF, Zheng WT, Singh DJ . Light scattering and surface plasmons on small spherical particles. Light Sci Appl 2014; 3: e179 .
(
10.1038/lsa.2014.60
) / Light Sci Appl by XF Fan (2014) -
Kelly KL, Coronado E, Zhao LL, Schatz GC . The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2002; 107: 668–677 .
(
10.1021/jp026731y
) / J Phys Chem B by KL Kelly (2002) -
Wang CL, Astruc D . Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 2014; 43: 7188–7216 .
(
10.1039/C4CS00145A
) / Chem Soc Rev by CL Wang (2014) -
Evanoff DD, Chumanov G . Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 2005; 6: 1221–1231 .
(
10.1002/cphc.200500113
) / Chem Phys Chem by DD Evanoff (2005) -
Ma XC, Dai Y, Yu L, Lou ZZ, Huang BB et al. Electron-hole pair generation of the visible-light plasmonic photocatalyst Ag@AgCl: enhanced optical transitions involving midgap defect states of AgCl. J Phys Chem C 2014; 118: 12133–12140 .
(
10.1021/jp5023604
) / J Phys Chem C by XC Ma (2014) -
Burda C, Chen XB, Narayanan R, El-Sayed MA . Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005; 105: 1025–1102 .
(
10.1021/cr030063a
) / Chem Rev by C Burda (2005) -
Mahmoud MA, Chamanzar M, Adibi A, El-Sayed MA . Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J Am Chem Soc 2012; 134: 6434–6442 .
(
10.1021/ja300901e
) / J Am Chem Soc by MA Mahmoud (2012) -
Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M . Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 1993; 48: 18178–18188 .
(
10.1103/PhysRevB.48.18178
) / Phys Rev B by H Hövel (1993) -
Endriz JG, Spicer WE . Surface-plasmon-one-electron decay and its observation in photoemission. Phys Rev Lett 1970; 24: 64–68 .
(
10.1103/PhysRevLett.24.64
) / Phys Rev Lett by JG Endriz (1970) -
Lehmann J, Merschdorf M, Pfeiffer W, Thon A, Voll S et al. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys Rev Lett 2000; 85: 2921–2924 .
(
10.1103/PhysRevLett.85.2921
) / Phys Rev Lett by J Lehmann (2000) -
Hodak JH, Martini I, Hartland GV . Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 1998; 102: 6958–6967 .
(
10.1021/jp9809787
) / J Phys Chem B by JH Hodak (1998) -
Liu ZW, Hou WB, Pavaskar P, Aykol M, Cronin SB . Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 2011; 11: 1111–1116 .
(
10.1021/nl104005n
) / Nano Lett by ZW Liu (2011) -
Manjavacas A, Liu JG, Kulkarni V, Nordlander P . Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014; 8: 7630–7638 .
(
10.1021/nn502445f
) / ACS Nano by A Manjavacas (2014) -
Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M . Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett 2011; 11: 5548–5552 .
(
10.1021/nl203457v
) / Nano Lett by S Mubeen (2011) -
Grätzel M . Photoelectrochemical cells. Nature 2001; 414: 338–344 .
(
10.1038/35104607
) / Nature by M Grätzel (2001) -
Hashimoto K, Irie H, Fujishima A . TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 2005; 44: 8269 .
(
10.1143/JJAP.44.8269
) / Jpn J Appl Phys by K Hashimoto (2005) -
Sundararaman R, Narang P, Jermyn AS, Goddard III WA, Atwater HA . Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat Commun 2014; 5: 5788 .
(
10.1038/ncomms6788
) / Nat Commun by R Sundararaman (2014) -
Bernardi M, Mustafa J, Neaton JB, Louie SG . Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat Commun 2015; 6: 7044 .
(
10.1038/ncomms8044
) / Nat Commun by M Bernardi (2015) -
Zhao GL, Kozuka H, Yoko T . Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 1996; 277: 147–154 .
(
10.1016/0040-6090(95)08006-6
) / Thin Solid Films by GL Zhao (1996) -
Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater 2003; 2: 29–31 .
(
10.1038/nmat796
) / Nat Mater by Y Ohko (2003) -
Furube A, Du LC, Hara K, Katoh R, Tachiya M . Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 2007; 129: 14852–14853 .
(
10.1021/ja076134v
) / J Am Chem Soc by A Furube (2007) -
Asbury JB, Hao EC, Wang YQ, Ghosh HN, Lian TQ . Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J Phys Chem B 2001; 105: 4545–4557 .
(
10.1021/jp003485m
) / J Phys Chem B by JB Asbury (2001) -
DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA et al. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew Chem Int Ed 2014; 53: 7887–7891 .
(
10.1002/anie.201404259
) / Angew Chem Int Ed by JS DuChene (2014) -
Liu LQ, Li P, Wang T, Hu HL, Jiang HY et al. Constructing a multicomponent junction for improved visible-light photocatalytic performance induced by Au nanoparticles. Chem Commun 2015; 51: 2173–2176 .
(
10.1039/C4CC08556F
) / Chem Commun by LQ Liu (2015) -
Ha JW, Ruberu TPA, Han R, Dong B, Vela J et al. Super-resolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. J Am Chem Soc 2014; 136: 1398–1408 .
(
10.1021/ja409011y
) / J Am Chem Soc by JW Ha (2014) -
Li A, Zhang P, Chang XX, Cai WT, Wang T et al. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015; 11: 1892–1899 .
(
10.1002/smll.201403058
) / Small by A Li (2015) -
Tung RT . The physics and chemistry of the Schottky barrier height. Appl Phys Rev 2014; 1: 011304 .
(
10.1063/1.4858400
) / Appl Phys Rev by RT Tung (2014) -
Park JY, Kim SM, Lee H, Naik B . Hot electron and surface plasmon-driven catalytic reaction in metal-semiconductor nanostructures. Catal Lett 2014; 144: 1996–2004 .
(
10.1007/s10562-014-1333-2
) / Catal Lett by JY Park (2014) -
Watanabe A, Kozuka H . Photoanodic properties of sol-gel-derived Fe2O3 thin films containing dispersed gold and silver particles. J Phys Chem B 2003; 107: 12713–12720 .
(
10.1021/jp0303568
) / J Phys Chem B by A Watanabe (2003) -
Giugni A, Torre B, Toma A, Francardi M, Malerba M et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat Nano 2013; 8: 845–852 .
(
10.1038/nnano.2013.207
) / Nat Nano by A Giugni (2013) -
Li JT, Cushing SK, Zheng P, Meng FK, Chu D et al. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun 2013; 4: 2651 .
(
10.1038/ncomms3651
) / Nat Commun by JT Li (2013) -
Knight MW, Sobhani H, Nordlander P, Halas NJ . Photodetection with active optical antennas. Science 2011; 332: 702–704 .
(
10.1126/science.1203056
) / Science by MW Knight (2011) -
Knight MW, Wang Y, Urban AS, Sobhani A, Zheng BY et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett 2013; 13: 1687–1692 .
(
10.1021/nl400196z
) / Nano Lett by MW Knight (2013) -
Fang CH, Jia HL, Chang S, Ruan QF, Wang P et al. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ Sci 2014; 7: 3431–3438 .
(
10.1039/C4EE01787K
) / Energy Environ Sci by CH Fang (2014) -
Li BX, Gu T, Ming T, Wang JX, Wang P et al. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014; 8: 8152–8162 .
(
10.1021/nn502303h
) / ACS Nano by BX Li (2014) -
Liu LQ, Dao TD, Kodiyath R, Kang Q, Abe H et al. Plasmonic Janus-composite photocatalyst comprising Au and C-TiO2 for enhanced aerobic oxidation over a broad visible-light range. Adv Funct Mater 2014; 24: 7754–7762 .
(
10.1002/adfm.201402088
) / Adv Funct Mater by LQ Liu (2014) -
Fan XM, Xu CX, Hao XL, Tian ZS, Lin Y . Synthesis and optical properties of Janus structural ZnO/Au nanocomposites. EPL 2014; 106: 67001 .
(
10.1209/0295-5075/106/67001
) / EPL by XM Fan (2014) -
Ma XC, Dai Y, Yu L, Huang BB . New basic insights into the low hot electron injection efficiency of gold-nanoparticle-photosensitized titanium dioxide. ACS Appl Mater Interfaces 2014; 6: 12388–12394 .
(
10.1021/am502251j
) / ACS Appl Mater Interfaces by XC Ma (2014) -
Li JT, Cushing SK, Zheng P, Senty T, Meng FK et al. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 2014; 136: 8438–8449 .
(
10.1021/ja503508g
) / J Am Chem Soc by JT Li (2014) -
Mrovec M, Albina JM, Meyer B, Elsässer C . Schottky barriers at transition-metal/SrTiO3 (001) interfaces. Phys Rev B 2009; 79: 245121 .
(
10.1103/PhysRevB.79.245121
) / Phys Rev B by M Mrovec (2009) -
Rao FY, Kim M, Freeman AJ, Tang SP, Anthony M . Structural and electronic properties of transition-metal/BaTiO3 (001) interfaces. Phys Rev B 1997; 55: 13953–13960 .
(
10.1103/PhysRevB.55.13953
) / Phys Rev B by FY Rao (1997) -
Tamura T, Ishibashi S, Terakura K, Weng HM . First-principles study of the rectifying properties of Pt/TiO2 interface. Phys Rev B 2009; 80: 195302 .
(
10.1103/PhysRevB.80.195302
) / Phys Rev B by T Tamura (2009) -
Smith JG, Faucheaux JA, Jain PK . Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 2015; 10: 67–80 .
(
10.1016/j.nantod.2014.12.004
) / Nano Today by JG Smith (2015) -
Lin ZJ, Wang XH, Liu J, Tian ZY, Dai LC et al. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO2 photocatalysis systems: pros and cons. Nanoscale 2015; 7: 4114–4123 .
(
10.1039/C4NR06929C
) / Nanoscale by ZJ Lin (2015) -
Persson BNJ . Polarizability of small spherical metal particles: influence of the matrix environment. Surf Sci 1993; 281: 153–162 .
(
10.1016/0039-6028(93)90865-H
) / Surf Sci by BNJ Persson (1993) -
Bosbach J, Hendrich C, Stietz F, Vartanyan T, Träger F . Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding. Phys Rev Lett 2002; 89: 257404 .
(
10.1103/PhysRevLett.89.257404
) / Phys Rev Lett by J Bosbach (2002) -
Petek H, Weida MJ, Nagano H, Ogawa S . Real-time observation of adsorbate atom motion above a metal surface. Science 2000; 288: 1402–1404 .
(
10.1126/science.288.5470.1402
) / Science by H Petek (2000) -
Jain PK, Qian W, El-Sayed MA . Ultrafast cooling of photoexcited electrons in gold nanoparticle−thiolated DNA conjugates involves the dissociation of the gold−thiol bond. J Am Chem Soc 2006; 128: 2426–2433 .
(
10.1021/ja056769z
) / J Am Chem Soc by PK Jain (2006) -
Kale MJ, Avanesian T, Xin HL, Yan J, Christopher P . Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett 2014; 14: 5405–5412 .
(
10.1021/nl502571b
) / Nano Lett by MJ Kale (2014) -
Kale MJ, Avanesian T, Christopher P . Direct photocatalysis by plasmonic nanostructures. ACS Catal 2014; 4: 116–128 .
(
10.1021/cs400993w
) / ACS Catal by MJ Kale (2014) -
Cushing SK, Li JT, Meng FK, Senty TR, Suri S et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 2012; 134: 15033–15041 .
(
10.1021/ja305603t
) / J Am Chem Soc by SK Cushing (2012) -
Sahoo H . Förster resonance energy transfer – a spectroscopic nanoruler: principle and applications. J Photochem Photobiol C 2011; 12: 20–30 .
(
10.1016/j.jphotochemrev.2011.05.001
) / J Photochem Photobiol C by H Sahoo (2011) -
Dressel M, Grüner G . Electrodynamics of solids: optical properties of electrons in matter. Cambridge: Cambridge University Press; 2002.
(
10.1017/CBO9780511606168
) / Electrodynamics of solids: optical properties of electrons in matter by M Dressel (2002) -
Liu TX, Li BX, Hao YG, Han F, Zhang LL et al. A general method to diverse silver/mesoporous-metal-oxide nanocomposites with plasmon-enhanced photocatalytic activity. Appl Catal B 2015; 165: 378–388 .
(
10.1016/j.apcatb.2014.10.041
) / Appl Catal B by TX Liu (2015) -
Meng FK, Cushing SK, Li JT, Hao SM, Wu NQ . Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal 2015; 5: 1949–1955 .
(
10.1021/cs5016194
) / ACS Catal by FK Meng (2015) -
Near RD, Hayden SC, El-Sayed MA . Thin to thick, short to long: spectral properties of gold nanorods by theoretical modeling. J Phys Chem C 2013; 117: 18653–18656 .
(
10.1021/jp4078344
) / J Phys Chem C by RD Near (2013) -
Mahmoud MA, El-Sayed MA . Different plasmon sensing behavior of silver and gold nanorods. J Phys Chem Lett 2013; 4: 1541–1545 .
(
10.1021/jz4005015
) / J Phys Chem Lett by MA Mahmoud (2013) -
Chen HJ, Shao L, Li Q, Wang JF . Gold nanorods and their plasmonic properties. Chem Soc Rev 2013; 42: 2679–2724 .
(
10.1039/C2CS35367A
) / Chem Soc Rev by HJ Chen (2013) -
Seh ZW, Liu SH, Zhang SY, Bharathi MS, Ramanarayan H et al. Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. Angew Chem Int Ed 2011; 50: 10140–10143 .
(
10.1002/anie.201104943
) / Angew Chem Int Ed by ZW Seh (2011) -
Kumar MK, Krishnamoorthy S, Tan LK, Chiam SY, Tripathy S et al. Field effects in plasmonic photocatalyst by precise SiO2 thickness control using atomic layer deposition. ACS Catal 2011; 1: 300–308 .
(
10.1021/cs100117v
) / ACS Catal by MK Kumar (2011) -
Ingram DB, Christopher P, Bauer JL, Linic S . Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 2011; 1: 1441–1447 .
(
10.1021/cs200320h
) / ACS Catal by DB Ingram (2011) -
Mohamed MB, Volkov V, Link S, El-Sayed MA . The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 2000; 317: 517–523 .
(
10.1016/S0009-2614(99)01414-1
) / Chem Phys Lett by MB Mohamed (2000) -
Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, von Plessen G et al. Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 2004; 70: 205424 .
(
10.1103/PhysRevB.70.205424
) / Phys Rev B by E Dulkeith (2004) -
Ingram DB, Linic S . Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 2011; 133: 5202–5205 .
(
10.1021/ja200086g
) / J Am Chem Soc by DB Ingram (2011) -
Atwater HA, Polman A . Plasmonics for improved photovoltaic devices. Nat Mater 2010; 9: 205–213 .
(
10.1038/nmat2629
) / Nat Mater by HA Atwater (2010) -
Govorov AO, Zhang H . Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons. J Phys Chem C 2015; 119: 6181–6194 .
(
10.1021/jp512105m
) / J Phys Chem C by AO Govorov (2015) -
Govorov AO, Zhang H, Demir HV, Gun'ko YK . Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today 2014; 9: 85–101 .
(
10.1016/j.nantod.2014.02.006
) / Nano Today by AO Govorov (2014) -
Govorov AO, Zhang H, Gun’ko YK . Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J Phys Chem C 2013; 117: 16616–16631 .
(
10.1021/jp405430m
) / J Phys Chem C by AO Govorov (2013) -
Zhang H, Govorov AO . Optical generation of hot plasmonic carriers in metal nanocrystals: the effects of shape and field enhancement. J Phys Chem C 2014; 118: 7606–7614 .
(
10.1021/jp500009k
) / J Phys Chem C by H Zhang (2014)
Dates
Type | When |
---|---|
Created | 9 years, 6 months ago (Feb. 12, 2016, 3:25 a.m.) |
Deposited | 2 years ago (Aug. 16, 2023, 1:13 p.m.) |
Indexed | 23 hours, 25 minutes ago (Sept. 4, 2025, 9:21 a.m.) |
Issued | 9 years, 6 months ago (Feb. 12, 2016) |
Published | 9 years, 6 months ago (Feb. 12, 2016) |
Published Online | 9 years, 6 months ago (Feb. 12, 2016) |
@article{Ma_2016, title={Energy transfer in plasmonic photocatalytic composites}, volume={5}, ISSN={2047-7538}, url={http://dx.doi.org/10.1038/lsa.2016.17}, DOI={10.1038/lsa.2016.17}, number={2}, journal={Light: Science & Applications}, publisher={Springer Science and Business Media LLC}, author={Ma, Xiang-Chao and Dai, Ying and Yu, Lin and Huang, Bai-Biao}, year={2016}, month=feb, pages={e16017–e16017} }