Crossref journal-article
Springer Science and Business Media LLC
Light: Science & Applications (297)
Bibliography

Ma, X.-C., Dai, Y., Yu, L., & Huang, B.-B. (2016). Energy transfer in plasmonic photocatalytic composites. Light: Science & Applications, 5(2), e16017–e16017.

Authors 4
  1. Xiang-Chao Ma (first)
  2. Ying Dai (additional)
  3. Lin Yu (additional)
  4. Bai-Biao Huang (additional)
References 122 Referenced 503
  1. Fujishima A, Honda K . Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238: 37–38 . (10.1038/238037a0) / Nature by A Fujishima (1972)
  2. Chen XB, Shen SH, Guo LJ, Mao SS . Semiconductor-based photocatalytic hydrogen generation. Chem Rev 2010; 110: 6503–6570 . (10.1021/cr1001645) / Chem Rev by XB Chen (2010)
  3. Ismail AA, Bahnemann DW . Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol Energy Mater Sol Cells 2014; 128: 85–101 . (10.1016/j.solmat.2014.04.037) / Sol Energy Mater Sol Cells by AA Ismail (2014)
  4. Nakata K, Fujishima A . TiO2 photocatalysis: design and applications. J Photochem Photobiol C 2012; 13: 169–189 . (10.1016/j.jphotochemrev.2012.06.001) / J Photochem Photobiol C by K Nakata (2012)
  5. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001; 293: 269–271 . (10.1126/science.1061051) / Science by R Asahi (2001)
  6. Dozzi MV, Selli E . Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C 2013; 14: 13–28 . (10.1016/j.jphotochemrev.2012.09.002) / J Photochem Photobiol C by MV Dozzi (2013)
  7. Hoffmann MR, Martin ST, Choi W, Bahnemann DW . Environmental applications of semiconductor photocatalysis. Chem Rev 1995; 95: 69–96 . (10.1021/cr00033a004) / Chem Rev by MR Hoffmann (1995)
  8. Wang SB, Pan L, Song JJ, Mi WB, Zou JJ et al. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 2015; 137: 2975–2983 . (10.1021/ja512047k) / J Am Chem Soc by SB Wang (2015)
  9. Yang KS, Dai Y, Huang BB, Whangbo MH . Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem Mater 2008; 20: 6528–6534 . (10.1021/cm801741m) / Chem Mater by KS Yang (2008)
  10. Ma XC, Dai Y, Huang BB . Origin of the increased photocatalytic performance of TiO2 nanocrystal composed of pure core and heavily nitrogen-doped shell: a theoretical study. ACS Appl Mater Interfaces 2014; 6: 22815–22822 . (10.1021/am506968h) / ACS Appl Mater Interfaces by XC Ma (2014)
  11. Odobel F, Pellegrin Y . Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications. J Phys Chem Lett 2013; 4: 2551–2564 . (10.1021/jz400861v) / J Phys Chem Lett by F Odobel (2013)
  12. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 2012; 125: 331–349 . (10.1016/j.apcatb.2012.05.036) / Appl Catal B by M Pelaez (2012)
  13. Serpone N, Emeline AV . Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 2012; 3: 673–677 . (10.1021/jz300071j) / J Phys Chem Lett by N Serpone (2012)
  14. Ma XC, Dai Y, Guo M, Huang BB . Insights into the role of surface distortion in promoting the separation and transfer of photogenerated carriers in anatase TiO2. J Phys Chem C 2013; 117: 24496–24502 . (10.1021/jp4092706) / J Phys Chem C by XC Ma (2013)
  15. Chen XB, Liu L, Yu PY, Mao SS . Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011; 331: 746–750 . (10.1126/science.1200448) / Science by XB Chen (2011)
  16. Liu L, Yu PY, Chen XB, Mao SS, Shen DZ . Hydrogenation and disorder in engineered black TiO2. Phys Rev Lett 2013; 111: 065505 . (10.1103/PhysRevLett.111.065505) / Phys Rev Lett by L Liu (2013)
  17. Lu JB, Dai Y, Jin H, Huang BB . Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation. Phys Chem Chem Phys 2011; 13: 18063–18068 . (10.1039/c1cp22726b) / Phys Chem Chem Phys by JB Lu (2011)
  18. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 2008; 130: 1676–1680 . (10.1021/ja076503n) / J Am Chem Soc by K Awazu (2008)
  19. Wang P, Huang BB, Qin XY, Zhang XY, Dai Y et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 2008; 47: 7931–7933 . (10.1002/anie.200802483) / Angew Chem Int Ed by P Wang (2008)
  20. Li XN, Ju Z, Li F, Huang Y, Xie YM et al. Visible light responsive Bi7Fe3Ti3O21 nanoshelf photocatalysts with ferroelectricity and ferromagnetism. J Mater Chem A 2014; 2: 13366–13372 . (10.1039/C4TA01799D) / J Mater Chem A by XN Li (2014)
  21. Wang WJ, Huang BB, Ma XC, Wang ZY, Qin XY et al. Efficient separation of photogenerated electron-hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates. Chem Eur J 2013; 19: 14777–14780 . (10.1002/chem.201302884) / Chem Eur J by WJ Wang (2013)
  22. Zhang R, Dai Y, Lou ZZ, Li ZJ, Wang ZY et al. Layered photocatalyst Bi2O2[BO2(OH)] nanosheets with internal polar field enhanced photocatalytic activity. Cryst Eng Comm 2014; 16: 4931–4934 . (10.1039/C4CE00162A) / Cryst Eng Comm by R Zhang (2014)
  23. Batzill M . Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ Sci 2011; 4: 3275–3286 . (10.1039/c1ee01577j) / Energy Environ Sci by M Batzill (2011)
  24. Xiang QJ, Yu JG, Jaroniec M . Graphene-based semiconductor photocatalysts. Chem Soc Rev 2012; 41: 782–796 . (10.1039/C1CS15172J) / Chem Soc Rev by QJ Xiang (2012)
  25. Xiang QJ, Yu JG . Graphene-based photocatalysts for hydrogen generation. J Phys Chem Lett 2013; 4: 753–759 . (10.1021/jz302048d) / J Phys Chem Lett by QJ Xiang (2013)
  26. Linic S, Christopher P, Ingram DB . Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 2011; 10: 911–921 . (10.1038/nmat3151) / Nat Mater by S Linic (2011)
  27. Clavero C . Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 2014; 8: 95–103 . (10.1038/nphoton.2013.238) / Nat Photon by C Clavero (2014)
  28. Cheng HF, Fuku K, Kuwahara Y, Mori K, Yamashita H . Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J Mater Chem A 2015; 3: 5244–5258 . (10.1039/C4TA06484D) / J Mater Chem A by HF Cheng (2015)
  29. Lou ZZ, Wang ZY, Huang BB, Dai Y . Synthesis and activity of plasmonic photocatalysts. Chem Cat Chem 2014; 6: 2456–2476 . / Chem Cat Chem by ZZ Lou (2014)
  30. Zhang XM, Chen YL, Liu RS, Tsai DP . Plasmonic photocatalysis. Rep Prog Phys 2013; 76: 046401 . (10.1088/0034-4885/76/4/046401) / Rep Prog Phys by XM Zhang (2013)
  31. Wang P, Huang BB, Dai Y, Whangbo MH . Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 2012; 14: 9813–9825 . (10.1039/c2cp40823f) / Phys Chem Chem Phys by P Wang (2012)
  32. Hou WB, Cronin SB . A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 2013; 23: 1612–1619 . (10.1002/adfm.201202148) / Adv Funct Mater by WB Hou (2013)
  33. Jiang RB, Li BX, Fang CH, Wang JF . Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater 2014; 26: 5274–5309 . (10.1002/adma.201400203) / Adv Mater by RB Jiang (2014)
  34. Brongersma ML, Halas NJ, Nordlander P . Plasmon-induced hot carrier science and technology. Nat Nano 2015; 10: 25–34 . (10.1038/nnano.2014.311) / Nat Nano by ML Brongersma (2015)
  35. Ma XC, Dai Y, Yu L, Huang BB . Noble-metal-free plasmonic photocatalyst: hydrogen doped semiconductors. Sci Rep 2014; 4: 3986 . (10.1038/srep03986) / Sci Rep by XC Ma (2014)
  36. Wang Z, Yang CY, Lin TQ, Yin H, Chen P et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 2013; 23: 5444–5450 . (10.1002/adfm.201300486) / Adv Funct Mater by Z Wang (2013)
  37. Zheng ZK, Huang BB, Qin XY, Zhang XY, Dai Y et al. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 2011; 21: 9079–9087 . (10.1039/c1jm10983a) / J Mater Chem by ZK Zheng (2011)
  38. Yang D, Sun YY, Tong ZW, Tian Y, Li YB et al. Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J Phys Chem C 2015; 119: 5827–5835 . (10.1021/jp511948p) / J Phys Chem C by D Yang (2015)
  39. Wang XT, Liow C, Qi DP, Zhu BW, Leow WR et al. Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv Mater 2014; 26: 3506–3512 . (10.1002/adma.201306201) / Adv Mater by XT Wang (2014)
  40. Solarska R, Bienkowski K, Zoladek S, Majcher A, Stefaniuk T et al. Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold-polyoxometalate particles. Angew Chem 2014; 53: 14196–14200 . (10.1002/anie.201408374) / Angew Chem by R Solarska (2014)
  41. Sellappan R, Nielsen MG, González-Posada F, Vesborg PCK, Chorkendorff I et al. Effects of plasmon excitation on photocatalytic activity of Ag/TiO2 and Au/TiO2 nanocomposites. J Catal 2013; 307: 214–221 . (10.1016/j.jcat.2013.07.024) / J Catal by R Sellappan (2013)
  42. Christopher P, Ingram DB, Linic S . Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J Phys Chem C 2010; 114: 9173–9177 . (10.1021/jp101633u) / J Phys Chem C by P Christopher (2010)
  43. Zhang L, Blom DA, Wang H . Au-Cu2O core-shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem Mater 2011; 23: 4587–4598 . (10.1021/cm202078t) / Chem Mater by L Zhang (2011)
  44. Yu KF, Tian Y, Tatsuma T . Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold-TiO2 nanocomposites. Phys Chem Chem Phys 2006; 8: 5417–5420 . (10.1039/B610720F) / Phys Chem Chem Phys by KF Yu (2006)
  45. Torimoto T, Horibe H, Kameyama T, Okazaki K, Ikeda S et al. Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J Phys Chem Lett 2011; 2: 2057–2062 . (10.1021/jz2009049) / J Phys Chem Lett by T Torimoto (2011)
  46. Thomann I, Pinaud BA, Chen ZB, Clemens BM, Jaramillo TF et al. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett 2011; 11: 3440–3446 . (10.1021/nl201908s) / Nano Lett by I Thomann (2011)
  47. Shi XW, Ji YL, Hou S, Liu WQ, Zhang H et al. Plasmon enhancement effect in Au gold nanorods@Cu2O core-shell nanostructures and their use in probing defect states. Langmuir 2015; 31: 1537–1546 . (10.1021/la503988e) / Langmuir by XW Shi (2015)
  48. Seh ZW, Liu SH, Low M, Zhang SY, Liu ZL et al. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 2012; 24: 2310–2314 . (10.1002/adma.201104241) / Adv Mater by ZW Seh (2012)
  49. Ren ST, Wang BY, Zhang H, Ding P, Wang Q . Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts. ACS Appl Mater Interfaces 2015; 7: 4066–4074 . (10.1021/am507813g) / ACS Appl Mater Interfaces by ST Ren (2015)
  50. Ma X, Zhao K, Tang HJ, Chen Y, Lu CG et al. New insight into the role of gold nanoparticles in Au@CdS core-shell nanostructures for hydrogen evolution. Small 2014; 10: 4664–4670 . (10.1002/smll.201401494) / Small by X Ma (2014)
  51. Mubeen S, Lee J, Singh N, Krämer S, Stucky GD et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nano 2013; 8: 247–251 . (10.1038/nnano.2013.18) / Nat Nano by S Mubeen (2013)
  52. Long R, Prezhdo OV . Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J Am Chem Soc 2014; 136: 4343–4354 . (10.1021/ja5001592) / J Am Chem Soc by R Long (2014)
  53. Liu LQ, Ouyang SX, Ye JH . Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. Angew Chem Int Ed 2013; 52: 6689–6693 . (10.1002/anie.201300239) / Angew Chem Int Ed by LQ Liu (2013)
  54. Fan XF, Zheng WT, Singh DJ . Light scattering and surface plasmons on small spherical particles. Light Sci Appl 2014; 3: e179 . (10.1038/lsa.2014.60) / Light Sci Appl by XF Fan (2014)
  55. Kelly KL, Coronado E, Zhao LL, Schatz GC . The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2002; 107: 668–677 . (10.1021/jp026731y) / J Phys Chem B by KL Kelly (2002)
  56. Wang CL, Astruc D . Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 2014; 43: 7188–7216 . (10.1039/C4CS00145A) / Chem Soc Rev by CL Wang (2014)
  57. Evanoff DD, Chumanov G . Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 2005; 6: 1221–1231 . (10.1002/cphc.200500113) / Chem Phys Chem by DD Evanoff (2005)
  58. Ma XC, Dai Y, Yu L, Lou ZZ, Huang BB et al. Electron-hole pair generation of the visible-light plasmonic photocatalyst Ag@AgCl: enhanced optical transitions involving midgap defect states of AgCl. J Phys Chem C 2014; 118: 12133–12140 . (10.1021/jp5023604) / J Phys Chem C by XC Ma (2014)
  59. Burda C, Chen XB, Narayanan R, El-Sayed MA . Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005; 105: 1025–1102 . (10.1021/cr030063a) / Chem Rev by C Burda (2005)
  60. Mahmoud MA, Chamanzar M, Adibi A, El-Sayed MA . Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J Am Chem Soc 2012; 134: 6434–6442 . (10.1021/ja300901e) / J Am Chem Soc by MA Mahmoud (2012)
  61. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M . Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 1993; 48: 18178–18188 . (10.1103/PhysRevB.48.18178) / Phys Rev B by H Hövel (1993)
  62. Endriz JG, Spicer WE . Surface-plasmon-one-electron decay and its observation in photoemission. Phys Rev Lett 1970; 24: 64–68 . (10.1103/PhysRevLett.24.64) / Phys Rev Lett by JG Endriz (1970)
  63. Lehmann J, Merschdorf M, Pfeiffer W, Thon A, Voll S et al. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys Rev Lett 2000; 85: 2921–2924 . (10.1103/PhysRevLett.85.2921) / Phys Rev Lett by J Lehmann (2000)
  64. Hodak JH, Martini I, Hartland GV . Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 1998; 102: 6958–6967 . (10.1021/jp9809787) / J Phys Chem B by JH Hodak (1998)
  65. Liu ZW, Hou WB, Pavaskar P, Aykol M, Cronin SB . Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 2011; 11: 1111–1116 . (10.1021/nl104005n) / Nano Lett by ZW Liu (2011)
  66. Manjavacas A, Liu JG, Kulkarni V, Nordlander P . Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014; 8: 7630–7638 . (10.1021/nn502445f) / ACS Nano by A Manjavacas (2014)
  67. Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M . Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett 2011; 11: 5548–5552 . (10.1021/nl203457v) / Nano Lett by S Mubeen (2011)
  68. Grätzel M . Photoelectrochemical cells. Nature 2001; 414: 338–344 . (10.1038/35104607) / Nature by M Grätzel (2001)
  69. Hashimoto K, Irie H, Fujishima A . TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 2005; 44: 8269 . (10.1143/JJAP.44.8269) / Jpn J Appl Phys by K Hashimoto (2005)
  70. Sundararaman R, Narang P, Jermyn AS, Goddard III WA, Atwater HA . Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat Commun 2014; 5: 5788 . (10.1038/ncomms6788) / Nat Commun by R Sundararaman (2014)
  71. Bernardi M, Mustafa J, Neaton JB, Louie SG . Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat Commun 2015; 6: 7044 . (10.1038/ncomms8044) / Nat Commun by M Bernardi (2015)
  72. Zhao GL, Kozuka H, Yoko T . Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 1996; 277: 147–154 . (10.1016/0040-6090(95)08006-6) / Thin Solid Films by GL Zhao (1996)
  73. Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater 2003; 2: 29–31 . (10.1038/nmat796) / Nat Mater by Y Ohko (2003)
  74. Furube A, Du LC, Hara K, Katoh R, Tachiya M . Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 2007; 129: 14852–14853 . (10.1021/ja076134v) / J Am Chem Soc by A Furube (2007)
  75. Asbury JB, Hao EC, Wang YQ, Ghosh HN, Lian TQ . Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J Phys Chem B 2001; 105: 4545–4557 . (10.1021/jp003485m) / J Phys Chem B by JB Asbury (2001)
  76. DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA et al. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew Chem Int Ed 2014; 53: 7887–7891 . (10.1002/anie.201404259) / Angew Chem Int Ed by JS DuChene (2014)
  77. Liu LQ, Li P, Wang T, Hu HL, Jiang HY et al. Constructing a multicomponent junction for improved visible-light photocatalytic performance induced by Au nanoparticles. Chem Commun 2015; 51: 2173–2176 . (10.1039/C4CC08556F) / Chem Commun by LQ Liu (2015)
  78. Ha JW, Ruberu TPA, Han R, Dong B, Vela J et al. Super-resolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. J Am Chem Soc 2014; 136: 1398–1408 . (10.1021/ja409011y) / J Am Chem Soc by JW Ha (2014)
  79. Li A, Zhang P, Chang XX, Cai WT, Wang T et al. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015; 11: 1892–1899 . (10.1002/smll.201403058) / Small by A Li (2015)
  80. Tung RT . The physics and chemistry of the Schottky barrier height. Appl Phys Rev 2014; 1: 011304 . (10.1063/1.4858400) / Appl Phys Rev by RT Tung (2014)
  81. Park JY, Kim SM, Lee H, Naik B . Hot electron and surface plasmon-driven catalytic reaction in metal-semiconductor nanostructures. Catal Lett 2014; 144: 1996–2004 . (10.1007/s10562-014-1333-2) / Catal Lett by JY Park (2014)
  82. Watanabe A, Kozuka H . Photoanodic properties of sol-gel-derived Fe2O3 thin films containing dispersed gold and silver particles. J Phys Chem B 2003; 107: 12713–12720 . (10.1021/jp0303568) / J Phys Chem B by A Watanabe (2003)
  83. Giugni A, Torre B, Toma A, Francardi M, Malerba M et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat Nano 2013; 8: 845–852 . (10.1038/nnano.2013.207) / Nat Nano by A Giugni (2013)
  84. Li JT, Cushing SK, Zheng P, Meng FK, Chu D et al. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun 2013; 4: 2651 . (10.1038/ncomms3651) / Nat Commun by JT Li (2013)
  85. Knight MW, Sobhani H, Nordlander P, Halas NJ . Photodetection with active optical antennas. Science 2011; 332: 702–704 . (10.1126/science.1203056) / Science by MW Knight (2011)
  86. Knight MW, Wang Y, Urban AS, Sobhani A, Zheng BY et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett 2013; 13: 1687–1692 . (10.1021/nl400196z) / Nano Lett by MW Knight (2013)
  87. Fang CH, Jia HL, Chang S, Ruan QF, Wang P et al. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ Sci 2014; 7: 3431–3438 . (10.1039/C4EE01787K) / Energy Environ Sci by CH Fang (2014)
  88. Li BX, Gu T, Ming T, Wang JX, Wang P et al. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014; 8: 8152–8162 . (10.1021/nn502303h) / ACS Nano by BX Li (2014)
  89. Liu LQ, Dao TD, Kodiyath R, Kang Q, Abe H et al. Plasmonic Janus-composite photocatalyst comprising Au and C-TiO2 for enhanced aerobic oxidation over a broad visible-light range. Adv Funct Mater 2014; 24: 7754–7762 . (10.1002/adfm.201402088) / Adv Funct Mater by LQ Liu (2014)
  90. Fan XM, Xu CX, Hao XL, Tian ZS, Lin Y . Synthesis and optical properties of Janus structural ZnO/Au nanocomposites. EPL 2014; 106: 67001 . (10.1209/0295-5075/106/67001) / EPL by XM Fan (2014)
  91. Ma XC, Dai Y, Yu L, Huang BB . New basic insights into the low hot electron injection efficiency of gold-nanoparticle-photosensitized titanium dioxide. ACS Appl Mater Interfaces 2014; 6: 12388–12394 . (10.1021/am502251j) / ACS Appl Mater Interfaces by XC Ma (2014)
  92. Li JT, Cushing SK, Zheng P, Senty T, Meng FK et al. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 2014; 136: 8438–8449 . (10.1021/ja503508g) / J Am Chem Soc by JT Li (2014)
  93. Mrovec M, Albina JM, Meyer B, Elsässer C . Schottky barriers at transition-metal/SrTiO3 (001) interfaces. Phys Rev B 2009; 79: 245121 . (10.1103/PhysRevB.79.245121) / Phys Rev B by M Mrovec (2009)
  94. Rao FY, Kim M, Freeman AJ, Tang SP, Anthony M . Structural and electronic properties of transition-metal/BaTiO3 (001) interfaces. Phys Rev B 1997; 55: 13953–13960 . (10.1103/PhysRevB.55.13953) / Phys Rev B by FY Rao (1997)
  95. Tamura T, Ishibashi S, Terakura K, Weng HM . First-principles study of the rectifying properties of Pt/TiO2 interface. Phys Rev B 2009; 80: 195302 . (10.1103/PhysRevB.80.195302) / Phys Rev B by T Tamura (2009)
  96. Smith JG, Faucheaux JA, Jain PK . Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 2015; 10: 67–80 . (10.1016/j.nantod.2014.12.004) / Nano Today by JG Smith (2015)
  97. Lin ZJ, Wang XH, Liu J, Tian ZY, Dai LC et al. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO2 photocatalysis systems: pros and cons. Nanoscale 2015; 7: 4114–4123 . (10.1039/C4NR06929C) / Nanoscale by ZJ Lin (2015)
  98. Persson BNJ . Polarizability of small spherical metal particles: influence of the matrix environment. Surf Sci 1993; 281: 153–162 . (10.1016/0039-6028(93)90865-H) / Surf Sci by BNJ Persson (1993)
  99. Bosbach J, Hendrich C, Stietz F, Vartanyan T, Träger F . Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding. Phys Rev Lett 2002; 89: 257404 . (10.1103/PhysRevLett.89.257404) / Phys Rev Lett by J Bosbach (2002)
  100. Petek H, Weida MJ, Nagano H, Ogawa S . Real-time observation of adsorbate atom motion above a metal surface. Science 2000; 288: 1402–1404 . (10.1126/science.288.5470.1402) / Science by H Petek (2000)
  101. Jain PK, Qian W, El-Sayed MA . Ultrafast cooling of photoexcited electrons in gold nanoparticle−thiolated DNA conjugates involves the dissociation of the gold−thiol bond. J Am Chem Soc 2006; 128: 2426–2433 . (10.1021/ja056769z) / J Am Chem Soc by PK Jain (2006)
  102. Kale MJ, Avanesian T, Xin HL, Yan J, Christopher P . Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett 2014; 14: 5405–5412 . (10.1021/nl502571b) / Nano Lett by MJ Kale (2014)
  103. Kale MJ, Avanesian T, Christopher P . Direct photocatalysis by plasmonic nanostructures. ACS Catal 2014; 4: 116–128 . (10.1021/cs400993w) / ACS Catal by MJ Kale (2014)
  104. Cushing SK, Li JT, Meng FK, Senty TR, Suri S et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 2012; 134: 15033–15041 . (10.1021/ja305603t) / J Am Chem Soc by SK Cushing (2012)
  105. Sahoo H . Förster resonance energy transfer – a spectroscopic nanoruler: principle and applications. J Photochem Photobiol C 2011; 12: 20–30 . (10.1016/j.jphotochemrev.2011.05.001) / J Photochem Photobiol C by H Sahoo (2011)
  106. Dressel M, Grüner G . Electrodynamics of solids: optical properties of electrons in matter. Cambridge: Cambridge University Press; 2002. (10.1017/CBO9780511606168) / Electrodynamics of solids: optical properties of electrons in matter by M Dressel (2002)
  107. Liu TX, Li BX, Hao YG, Han F, Zhang LL et al. A general method to diverse silver/mesoporous-metal-oxide nanocomposites with plasmon-enhanced photocatalytic activity. Appl Catal B 2015; 165: 378–388 . (10.1016/j.apcatb.2014.10.041) / Appl Catal B by TX Liu (2015)
  108. Meng FK, Cushing SK, Li JT, Hao SM, Wu NQ . Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal 2015; 5: 1949–1955 . (10.1021/cs5016194) / ACS Catal by FK Meng (2015)
  109. Near RD, Hayden SC, El-Sayed MA . Thin to thick, short to long: spectral properties of gold nanorods by theoretical modeling. J Phys Chem C 2013; 117: 18653–18656 . (10.1021/jp4078344) / J Phys Chem C by RD Near (2013)
  110. Mahmoud MA, El-Sayed MA . Different plasmon sensing behavior of silver and gold nanorods. J Phys Chem Lett 2013; 4: 1541–1545 . (10.1021/jz4005015) / J Phys Chem Lett by MA Mahmoud (2013)
  111. Chen HJ, Shao L, Li Q, Wang JF . Gold nanorods and their plasmonic properties. Chem Soc Rev 2013; 42: 2679–2724 . (10.1039/C2CS35367A) / Chem Soc Rev by HJ Chen (2013)
  112. Seh ZW, Liu SH, Zhang SY, Bharathi MS, Ramanarayan H et al. Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. Angew Chem Int Ed 2011; 50: 10140–10143 . (10.1002/anie.201104943) / Angew Chem Int Ed by ZW Seh (2011)
  113. Kumar MK, Krishnamoorthy S, Tan LK, Chiam SY, Tripathy S et al. Field effects in plasmonic photocatalyst by precise SiO2 thickness control using atomic layer deposition. ACS Catal 2011; 1: 300–308 . (10.1021/cs100117v) / ACS Catal by MK Kumar (2011)
  114. Ingram DB, Christopher P, Bauer JL, Linic S . Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 2011; 1: 1441–1447 . (10.1021/cs200320h) / ACS Catal by DB Ingram (2011)
  115. Mohamed MB, Volkov V, Link S, El-Sayed MA . The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 2000; 317: 517–523 . (10.1016/S0009-2614(99)01414-1) / Chem Phys Lett by MB Mohamed (2000)
  116. Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, von Plessen G et al. Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 2004; 70: 205424 . (10.1103/PhysRevB.70.205424) / Phys Rev B by E Dulkeith (2004)
  117. Ingram DB, Linic S . Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 2011; 133: 5202–5205 . (10.1021/ja200086g) / J Am Chem Soc by DB Ingram (2011)
  118. Atwater HA, Polman A . Plasmonics for improved photovoltaic devices. Nat Mater 2010; 9: 205–213 . (10.1038/nmat2629) / Nat Mater by HA Atwater (2010)
  119. Govorov AO, Zhang H . Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons. J Phys Chem C 2015; 119: 6181–6194 . (10.1021/jp512105m) / J Phys Chem C by AO Govorov (2015)
  120. Govorov AO, Zhang H, Demir HV, Gun'ko YK . Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today 2014; 9: 85–101 . (10.1016/j.nantod.2014.02.006) / Nano Today by AO Govorov (2014)
  121. Govorov AO, Zhang H, Gun’ko YK . Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J Phys Chem C 2013; 117: 16616–16631 . (10.1021/jp405430m) / J Phys Chem C by AO Govorov (2013)
  122. Zhang H, Govorov AO . Optical generation of hot plasmonic carriers in metal nanocrystals: the effects of shape and field enhancement. J Phys Chem C 2014; 118: 7606–7614 . (10.1021/jp500009k) / J Phys Chem C by H Zhang (2014)
Dates
Type When
Created 9 years, 6 months ago (Feb. 12, 2016, 3:25 a.m.)
Deposited 2 years ago (Aug. 16, 2023, 1:13 p.m.)
Indexed 23 hours, 25 minutes ago (Sept. 4, 2025, 9:21 a.m.)
Issued 9 years, 6 months ago (Feb. 12, 2016)
Published 9 years, 6 months ago (Feb. 12, 2016)
Published Online 9 years, 6 months ago (Feb. 12, 2016)
Funders 0

None

@article{Ma_2016, title={Energy transfer in plasmonic photocatalytic composites}, volume={5}, ISSN={2047-7538}, url={http://dx.doi.org/10.1038/lsa.2016.17}, DOI={10.1038/lsa.2016.17}, number={2}, journal={Light: Science & Applications}, publisher={Springer Science and Business Media LLC}, author={Ma, Xiang-Chao and Dai, Ying and Yu, Lin and Huang, Bai-Biao}, year={2016}, month=feb, pages={e16017–e16017} }