Abstract
AbstractSeveral inherited neurodegenerative disorders are caused by CAG trinucleotide repeat expansions, which can be located either in the coding region or in the untranslated region (UTR) of the respective genes. Polyglutamine diseases (polyQ diseases) are caused by an expansion of a stretch of CAG repeats within the coding region, translating into a polyQ tract. The polyQ tract expansions result in conformational changes, eventually leading to aggregate formation. It is widely believed that the aggregation of polyQ proteins is linked with disease development. In addition, in the last couple of years, it has been shown that RNA-mediated mechanisms also have a profound role in neurotoxicity in both polyQ diseases and diseases caused by elongated CAG repeat motifs in their UTRs. Here, we review the different molecular mechanisms assigned to mRNAs with expanded CAG repeats. One aspect is the mRNA folding of CAG repeats. Furthermore, pathogenic mechanisms assigned to CAG repeat mRNAs are discussed. First, we discuss mechanisms that involve the sequestration of the diverse proteins to the expanded CAG repeat mRNA molecules. As a result of this, several cellular mechanisms are aberrantly regulated. These include the sequestration of MBNL1, leading to misregulated splicing; sequestration of nucleolin, leading to reduced cellular rRNA; and sequestration of proteins of the siRNA machinery, resulting in the production of short silencing RNAs that affect gene expression. Second, we discuss the effect of expanded CAG repeats on the subcellular localization, transcription and translation of the CAG repeat mRNA itself. Here we focus on the MID1 protein complex that triggers an increased translation of expanded CAG repeat mRNAs and a mechanism called repeat-associated non-ATG translation, which leads to proteins aberrantly translated from CAG repeat mRNAs. In addition, therapeutic approaches for CAG repeat disorders are discussed. Together, all the findings summarized here show that mutant mRNA has a fundamental role in the pathogenesis of CAG repeat diseases.
References
110
Referenced
142
-
Jasinska A, Krzyzosiak WJ . Repetitive sequences that shape the human transcriptome. FEBS Lett 2004; 567: 136–141.
(
10.1016/j.febslet.2004.03.109
) / FEBS Lett by A Jasinska (2004) -
Mirkin SM . Expandable DNA repeats and human disease. Nature 2007; 447: 932–940.
(
10.1038/nature05977
) / Nature by SM Mirkin (2007) -
Liu G, Leffak M . Instability of (CTG)n*(CAG)n trinucleotide repeats and DNA synthesis. Cell Biosci 2012; 2: 7.
(
10.1186/2045-3701-2-7
) / Cell Biosci by G Liu (2012) -
Orr HT, Zoghbi HY . Trinucleotide repeat disorders. Annu Rev Neurosci 2007; 30: 575–621.
(
10.1146/annurev.neuro.29.051605.113042
) / Annu Rev Neurosci by HT Orr (2007) -
Todd PK, Paulson HL . RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol 2010; 67: 291–300.
(
10.1002/ana.21948
) / Ann Neurol by PK Todd (2010) -
Nakamori M, Thornton C . Epigenetic changes and non-coding expanded repeats. Neurobiol Dis 2010; 39: 21–27.
(
10.1016/j.nbd.2010.02.004
) / Neurobiol Dis by M Nakamori (2010) -
Luheshi LM, Dobson CM . Bridging the gap: from protein misfolding to protein misfolding diseases. FEBS Lett 2009; 583: 2581–2586.
(
10.1016/j.febslet.2009.06.030
) / FEBS Lett by LM Luheshi (2009) -
Rubinsztein DC . Lessons from animal models of Huntington's disease. Trends Genet 2002; 18: 202–209.
(
10.1016/S0168-9525(01)02625-7
) / Trends Genet by DC Rubinsztein (2002) -
Perutz MF . Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci 1999; 24: 58–63.
(
10.1016/S0968-0004(98)01350-4
) / Trends Biochem Sci by MF Perutz (1999) -
Cummings CJ, Zoghbi HY . Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 2000; 1: 281–328.
(
10.1146/annurev.genom.1.1.281
) / Annu Rev Genomics Hum Genet by CJ Cummings (2000) -
Ross CA . Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 2002; 35: 819–822.
(
10.1016/S0896-6273(02)00872-3
) / Neuron by CA Ross (2002) -
Michalik A, Van Broeckhoven C . Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet 2003; 12: R173–R186.
(
10.1093/hmg/ddg295
) / Hum Mol Genet by A Michalik (2003) -
Bano D, Zanetti F, Mende Y, Nicotera P . Neurodegenerative processes in Huntington's disease. Cell Death Dis 2011; 2: e228.
(
10.1038/cddis.2011.112
) / Cell Death Dis by D Bano (2011) -
Jimenez-Sanchez M, Thomson F, Zavodszky E, Rubinsztein DC . Autophagy and polyglutamine diseases. Prog Neurobiol 2012; 97: 67–82.
(
10.1016/j.pneurobio.2011.08.013
) / Prog Neurobiol by M Jimenez-Sanchez (2012) -
Li LB, Yu Z, Teng X, Bonini NM . RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 2008; 453: 1107–1111.
(
10.1038/nature06909
) / Nature by LB Li (2008) -
Sobczak K,, de Mezer M, Michlewski G, Krol J, Krzyzosiak WJ . RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 2003; 31: 5469–5482.
(
10.1093/nar/gkg766
) / Nucleic Acids Res by K, Sobczak (2003) -
Romeo V . Myotonic dystrophy type 1 or Steinert's disease. Adv Exp Med Biol 2012; 724: 239–257.
(
10.1007/978-1-4614-0653-2_18
) / Adv Exp Med Biol by V Romeo (2012) -
Napierala M, Krzyzosiak WJ . CUG repeats present in myotonin kinase RNA form metastable "slippery" hairpins. J Biol Chem 1997; 272: 31079–31085.
(
10.1074/jbc.272.49.31079
) / J Biol Chem by M Napierala (1997) -
Galvao R, Mendes-Soares L, Camara J, Jaco I, Carmo-Fonseca M . Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis. Brain Res Bull 2001; 56: 191–201.
(
10.1016/S0361-9230(01)00651-7
) / Brain Res Bull by R Galvao (2001) -
Sobczak K, Krzyzosiak WJ . CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J Biol Chem 2005; 280: 3898–3910.
(
10.1074/jbc.M409984200
) / J Biol Chem by K Sobczak (2005) -
Sobczak K, Krzyzosiak WJ . Imperfect CAG repeats form diverse structures in SCA1 transcripts. J Biol Chem 2004; 279: 41563–41572.
(
10.1074/jbc.M405130200
) / J Biol Chem by K Sobczak (2004) -
de Mezer M, Wojciechowska M, Napierala M, Sobczak K, Krzyzosiak WJ . Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res 2011; 39: 3852–3863.
(
10.1093/nar/gkq1323
) / Nucleic Acids Res by M de Mezer (2011) -
Kiliszek A, Kierzek R, Krzyzosiak WJ, Rypniewski W . Atomic resolution structure of CAG RNA repeats: structural insights and implications for the trinucleotide repeat expansion diseases. Nucleic Acids Res 2010; 38: 8370–8376.
(
10.1093/nar/gkq700
) / Nucleic Acids Res by A Kiliszek (2010) -
Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 2009; 5: e1000600.
(
10.1371/journal.pgen.1000600
) / PLoS Genet by RS Daughters (2009) -
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26: 191–194.
(
10.1038/79911
) / Nat Genet by T Matsuura (2000) -
Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 1999; 23: 391–392.
(
10.1038/70493
) / Nat Genet by SE Holmes (1999) -
O'Hearn E, Holmes SE, Margolis RL . Spinocerebellar ataxia type 12. Handb Clin Neurol 2012; 103: 535–547.
(
10.1016/B978-0-444-51892-7.00034-6
) / Handb Clin Neurol by E O'Hearn (2012) -
Wang LC, Chen KY, Pan H, Wu CC, Chen PH, Liao YT et al. Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans. Cell Mol Life Sci 2011; 68: 1255–1267.
(
10.1007/s00018-010-0522-4
) / Cell Mol Life Sci by LC Wang (2011) -
McLeod CJ, O'Keefe LV, Richards RI . The pathogenic agent in Drosophila models of 'polyglutamine' diseases. Hum Mol Genet 2005; 14: 1041–1048.
(
10.1093/hmg/ddi096
) / Hum Mol Genet by CJ McLeod (2005) -
Hsu RJ, Hsiao KM, Lin MJ, Li CY, Wang LC, Chen LK et al. Long tract of untranslated CAG repeats is deleterious in transgenic mice. PLoS One 2011; 6: e16417.
(
10.1371/journal.pone.0016417
) / PLoS One by RJ Hsu (2011) -
Ho TH, Charlet BN, Poulos MG, Singh G, Swanson MS, Cooper TA . Muscleblind proteins regulate alternative splicing. EMBO J 2004; 23: 3103–3112.
(
10.1038/sj.emboj.7600300
) / EMBO J by TH Ho (2004) -
Kino Y, Mori D, Oma Y, Takeshita Y, Sasagawa N, Ishiura S . Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats. Hum Mol Genet 2004; 13: 495–507.
(
10.1093/hmg/ddh056
) / Hum Mol Genet by Y Kino (2004) -
Wang ET, Cody NA, Jog S, Biancolella M, Wang TT, Treacy DJ et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 2012; 150: 710–724.
(
10.1016/j.cell.2012.06.041
) / Cell by ET Wang (2012) -
Warf MB, Diegel JV, von Hippel PH, Berglund JA . The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc Natl Acad Sci USA 2009; 106: 9203–9208.
(
10.1073/pnas.0900342106
) / Proc Natl Acad Sci USA by MB Warf (2009) -
Yuan Y, Compton SA, Sobczak K, Stenberg MG, Thornton CA, Griffith JD et al. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res 2007; 35: 5474–5486.
(
10.1093/nar/gkm601
) / Nucleic Acids Res by Y Yuan (2007) -
Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 2000; 19: 4439–4448.
(
10.1093/emboj/19.17.4439
) / EMBO J by JW Miller (2000) -
Fardaei M, Larkin K, Brook JD, Hamshere MG . In vivo co-localisation of MBNL protein with DMPK expanded-repeat transcripts. Nucleic Acids Res 2001; 29: 2766–2771.
(
10.1093/nar/29.13.2766
) / Nucleic Acids Res by M Fardaei (2001) -
Mankodi A, Urbinati CR, Yuan QP, Moxley RT, Sansone V, Krym M et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 2001; 10: 2165–2170.
(
10.1093/hmg/10.19.2165
) / Hum Mol Genet by A Mankodi (2001) -
Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA . Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 2004; 13: 3079–3088.
(
10.1093/hmg/ddh327
) / Hum Mol Genet by H Jiang (2004) -
Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 2006; 15: 2087–2097.
(
10.1093/hmg/ddl132
) / Hum Mol Genet by X Lin (2006) -
Jog SP, Paul S, Dansithong W, Tring S, Comai L, Reddy S . RNA splicing is responsive to MBNL1 dose. PLoS One 2012; 7: e48825.
(
10.1371/journal.pone.0048825
) / PLoS One by SP Jog (2012) -
Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D et al. A muscleblind knockout model for myotonic dystrophy. Science 2003; 302: 1978–1980.
(
10.1126/science.1088583
) / Science by RN Kanadia (2003) -
Suenaga K, Lee KY, Nakamori M, Tatsumi Y, Takahashi MP, Fujimura H et al. Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain. PLoS One 2012; 7: e33218.
(
10.1371/journal.pone.0033218
) / PLoS One by K Suenaga (2012) -
Mykowska A, Sobczak K, Wojciechowska M, Kozlowski P, Krzyzosiak WJ . CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res 2011; 39: 8938–8951.
(
10.1093/nar/gkr608
) / Nucleic Acids Res by A Mykowska (2011) -
Tsoi H, Lau TC, Tsang SY, Lau KF, Chan HY . CAG expansion induces nucleolar stress in polyglutamine diseases. Proc Natl Acad Sci USA 2012; 109: 13428–13433.
(
10.1073/pnas.1204089109
) / Proc Natl Acad Sci USA by H Tsoi (2012) -
Tsoi H, Chan HY . Expression of expanded CAG transcripts triggers nucleolar stress in Huntington's disease. Cerebellum 2013; 12: 310–312.
(
10.1007/s12311-012-0447-6
) / Cerebellum by H Tsoi (2013) -
Zhang Y, Lu H . Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009; 16: 369–377.
(
10.1016/j.ccr.2009.09.024
) / Cancer Cell by Y Zhang (2009) -
van Eyk CL, O'Keefe LV, Lawlor KT, Samaraweera SE, McLeod CJ, Price GR et al. Perturbation of the Akt/Gsk3-beta signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs. Hum Mol Genet 2011; 20: 2783–2794.
(
10.1093/hmg/ddr177
) / Hum Mol Genet by CL van Eyk (2011) -
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.
(
10.1038/35888
) / Nature by A Fire (1998) -
Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.
(
10.1038/35053110
) / Nature by E Bernstein (2001) -
Hammond SM, Bernstein E, Beach D, Hannon GJ . An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404: 293–296.
(
10.1038/35005107
) / Nature by SM Hammond (2000) -
Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ . Argonaute2 a link between genetic and biochemical analyses of RNAi. Science 2001; 293: 1146–1150.
(
10.1126/science.1064023
) / Science by SM Hammond (2001) -
Zamore PD, Tuschl T, Sharp PA, Bartel DP . RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101: 25–33.
(
10.1016/S0092-8674(00)80620-0
) / Cell by PD Zamore (2000) -
Handa V, Saha T, Usdin K . The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res 2003; 31: 6243–6248.
(
10.1093/nar/gkg818
) / Nucleic Acids Res by V Handa (2003) -
Krol J, Fiszer A, Mykowska A, Sobczak K, de Mezer M, Krzyzosiak WJ . Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 2007; 25: 575–586.
(
10.1016/j.molcel.2007.01.031
) / Mol Cell by J Krol (2007) -
Banez-Coronel M, Porta S, Kagerbauer B, Mateu-Huertas E, Pantano L, Ferrer I et al. A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 2012; 8: e1002481.
(
10.1371/journal.pgen.1002481
) / PLoS Genet by M Banez-Coronel (2012) -
He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW . The antisense transcriptomes of human cells. Science 2008; 322: 1855–1857.
(
10.1126/science.1163853
) / Science by Y He (2008) -
Faghihi MA, Wahlestedt C . Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 2009; 10: 637–643.
(
10.1038/nrm2738
) / Nat Rev Mol Cell Biol by MA Faghihi (2009) -
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M et al. Antisense transcription in the mammalian transcriptome. Science 2005; 309: 1564–1566.
(
10.1126/science.1112009
) / Science by S Katayama (2005) -
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 2006; 38: 758–769.
(
10.1038/ng1827
) / Nat Genet by ML Moseley (2006) -
Wilburn B, Rudnicki DD, Zhao J, Weitz TM, Cheng Y, Gu X et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington's disease-like 2 mice. Neuron 2011; 70: 427–440.
(
10.1016/j.neuron.2011.03.021
) / Neuron by B Wilburn (2011) -
Seixas AI, Holmes SE, Takeshima H, Pavlovich A, Sachs N, Pruitt JL et al. Loss of junctophilin-3 contributes to Huntington disease-like 2 pathogenesis. Ann Neurol 2012; 71: 245–257.
(
10.1002/ana.22598
) / Ann Neurol by AI Seixas (2012) -
Yu Z, Teng X, Bonini NM . Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophy. PLoS Genet 2011; 7: e1001340.
(
10.1371/journal.pgen.1001340
) / PLoS Genet by Z Yu (2011) -
Lawlor KT, O'Keefe LV, Samaraweera SE, van Eyk CL, McLeod CJ, Maloney CA et al. Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases. Hum Mol Genet 2011; 20: 3757–3768.
(
10.1093/hmg/ddr292
) / Hum Mol Genet by KT Lawlor (2011) -
Williams BR . PKR; a sentinel kinase for cellular stress. Oncogene 1999; 18: 6112–6120.
(
10.1038/sj.onc.1203127
) / Oncogene by BR Williams (1999) -
Tian B, White RJ, Xia T, Welle S, Turner DH, Mathews MB et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA 2000; 6: 79–87.
(
10.1017/S1355838200991544
) / RNA by B Tian (2000) -
Peel AL, Rao RV, Cottrell BA, Hayden MR, Ellerby LM, Bredesen DE . Double-stranded RNA-dependent protein kinase, PKR, binds preferentially to Huntington's disease (HD) transcripts and is activated in HD tissue. Hum Mol Genet 2001; 10: 1531–1538.
(
10.1093/hmg/10.15.1531
) / Hum Mol Genet by AL Peel (2001) -
Bando Y, Onuki R, Katayama T, Manabe T, Kudo T, Taira K et al. Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson's disease and Huntington's disease. Neurochem Int 2005; 46: 11–18.
(
10.1016/j.neuint.2004.07.005
) / Neurochem Int by Y Bando (2005) -
Liu CR, Chang CR, Chern Y, Wang TH, Hsieh WC, Shen WC et al. Spt4 is selectively required for transcription of extended trinucleotide repeats. Cell 2012; 148: 690–701.
(
10.1016/j.cell.2011.12.032
) / Cell by CR Liu (2012) -
Krauß S, Griesche N, Jastrzebska E, Chen C, Rutschow Ds, Achm√°ller C et al. Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1ÄìPP2A protein complex. Nat Commun [10.1038/ncomms2514] 2013; 4: 1511.
(
10.1038/ncomms2514
) / Nat Commun by S Krauß (2013) -
Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 2001; 29: 287–294.
(
10.1038/ng762
) / Nat Genet by A Trockenbacher (2001) -
Liu E, Knutzen CA, Krauss S, Schweiger S, Chiang GG . Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc Natl Acad Sci USA 2011; 108: 8680–8685.
(
10.1073/pnas.1100131108
) / Proc Natl Acad Sci USA by E Liu (2011) -
Aranda-Orgilles B, Rutschow D, Zeller R, Karagiannidis AI, Koehler A, Chen C et al. The PP2a-specific ubiquitin ligase Mid1 is a sequence-dependent regulator of translation efficiency controlling 3-phosphoinositide dependent protein kinase-1 (PDPK-1). J Biol Chem 2011; 286: 39945–39957.
(
10.1074/jbc.M111.224451
) / J Biol Chem by B Aranda-Orgilles (2011) -
Aranda-Orgilles B, Trockenbacher A, Winter J, Aigner J, Kohler A, Jastrzebska E et al. The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex. Hum Genet 2008; 123: 163–176.
(
10.1007/s00439-007-0456-6
) / Hum Genet by B Aranda-Orgilles (2008) -
Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 2011; 108: 260–265.
(
10.1073/pnas.1013343108
) / Proc Natl Acad Sci USA by T Zu (2011) -
Pearson CE . Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!. PLoS Genet 2011; 7: e1002018.
(
10.1371/journal.pgen.1002018
) / PLoS Genet by CE Pearson (2011) -
Wojciechowska M, Krzyzosiak WJ . Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet 2011; 20: 3811–3821.
(
10.1093/hmg/ddr299
) / Hum Mol Genet by M Wojciechowska (2011) -
Ho TH, Savkur RS, Poulos MG, Mancini MA, Swanson MS, Cooper TA . Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci 2005; 118: 2923–2933.
(
10.1242/jcs.02404
) / J Cell Sci by TH Ho (2005) -
Tsoi H, Lau CK, Lau KF, Chan HY . Perturbation of U2AF65/NXF1-mediated RNA nuclear export enhances RNA toxicity in polyQ diseases. Hum Mol Genet 2011; 20: 3787–3797.
(
10.1093/hmg/ddr297
) / Hum Mol Genet by H Tsoi (2011) -
Zuccato C, Valenza M, Cattaneo E . Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 2010; 90: 905–981.
(
10.1152/physrev.00041.2009
) / Physiol Rev by C Zuccato (2010) -
Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10: 148–154.
(
10.1038/nm985
) / Nat Med by M Tanaka (2004) -
Butler DC, McLear JA, Messer A . Engineered antibody therapies to counteract mutant huntingtin and related toxic intracellular proteins. Prog Neurobiol 2012; 97: 190–204.
(
10.1016/j.pneurobio.2011.11.004
) / Prog Neurobiol by DC Butler (2012) -
Lecerf JM, Shirley TL, Zhu Q, Kazantsev A, Amersdorfer P, Housman DE et al. Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington's disease. Proc Natl Acad Sci USA 2001; 98: 4764–4769.
(
10.1073/pnas.071058398
) / Proc Natl Acad Sci USA by JM Lecerf (2001) -
Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL et al. Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci USA 2005; 102: 11563–11568.
(
10.1073/pnas.0505321102
) / Proc Natl Acad Sci USA by WJ Wolfgang (2005) -
Bortvedt SF, McLear JA, Messer A, Ahern-Rindell AJ, Wolfgang WJ . Cystamine and intrabody co-treatment confers additional benefits in a fly model of Huntington's disease. Neurobiol Dis 2010; 40: 130–134.
(
10.1016/j.nbd.2010.04.007
) / Neurobiol Dis by SF Bortvedt (2010) -
Hochfeld WE, Lee S, Rubinsztein DC . Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacol Sin 2013; 34: 600–604.
(
10.1038/aps.2012.189
) / Acta Pharmacol Sin by WE Hochfeld (2013) -
Tanaka F, Katsuno M, Banno H, Suzuki K, Adachi H, Sobue G . Current status of treatment of spinal and bulbar muscular atrophy. Neural Plast 2012; 2012: 369284.
(
10.1155/2012/369284
) / Neural Plast by F Tanaka (2012) -
Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC . Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 2010; 133: 93–104.
(
10.1093/brain/awp292
) / Brain by FM Menzies (2010) -
Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 2010; 19: 2144–2153.
(
10.1093/hmg/ddq093
) / Hum Mol Genet by C Rose (2010) -
Ravikumar B, Duden R, Rubinsztein DC . Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002; 11: 1107–1117.
(
10.1093/hmg/11.9.1107
) / Hum Mol Genet by B Ravikumar (2002) -
Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C et al. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 2003; 23: 2203–2211.
(
10.1523/JNEUROSCI.23-06-02203.2003
) / J Neurosci by H Adachi (2003) -
Tokui K, Adachi H, Waza M, Katsuno M, Minamiyama M, Doi H et al. 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Hum Mol Genet 2009; 18: 898–910.
(
10.1093/hmg/ddn419
) / Hum Mol Genet by K Tokui (2009) -
Nagashima Y, Kowa H, Tsuji S, Iwata A . FAT10 protein binds to polyglutamine proteins and modulates their solubility. J Biol Chem 2011; 286: 29594–29600.
(
10.1074/jbc.M111.261032
) / J Biol Chem by Y Nagashima (2011) -
Reuter I, Tai YF, Pavese N, Chaudhuri KR, Mason S, Polkey CE et al. Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington's disease. J Neurol Neurosurg Psychiatry 2008; 79: 948–951.
(
10.1136/jnnp.2007.142380
) / J Neurol Neurosurg Psychiatry by I Reuter (2008) -
Benraiss A, Goldman SA . Cellular therapy and induced neuronal replacement for Huntington's disease. Neurotherapeutics 2011; 8: 577–590.
(
10.1007/s13311-011-0075-8
) / Neurotherapeutics by A Benraiss (2011) -
Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci 2011; 18: 54.
(
10.1186/1423-0127-18-54
) / J Biomed Sci by YK Chang (2011) -
Benraiss A, Bruel-Jungerman E, Lu G, Economides AN, Davidson B, Goldman SA . Sustained induction of neuronal addition to the adult rat neostriatum by AAV4-delivered noggin and BDNF. Gene Ther 2012; 19: 483–493.
(
10.1038/gt.2011.114
) / Gene Ther by A Benraiss (2012) -
Meisner F, Scheller C, Kneitz S, Sopper S, Neuen-Jacob E, Riederer P et al. Memantine upregulates BDNF and prevents dopamine deficits in SIV-infected macaques: a novel pharmacological action of memantine. Neuropsychopharmacology 2008; 33: 2228–2236.
(
10.1038/sj.npp.1301615
) / Neuropsychopharmacology by F Meisner (2008) -
Zigova T, Pencea V, Wiegand SJ, Luskin MB . Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 1998; 11: 234–245.
(
10.1006/mcne.1998.0684
) / Mol Cell Neurosci by T Zigova (1998) -
Borrell-Pages M, Canals JM, Cordelieres FP, Parker JA, Pineda JR, Grange G et al. Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J Clin Invest 2006; 116: 1410–1424.
(
10.1172/JCI27607
) / J Clin Invest by M Borrell-Pages (2006) -
Naia L, Ribeiro MJ, Rego AC . Mitochondrial and metabolic-based protective strategies in Huntington’s disease: the case of creatine and coenzyme Q. Rev Neurosci 2012; 23: 13–28.
(
10.1515/rns.2011.060
) / Rev Neurosci by L Naia (2012) -
Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I . Dantrolene is neuroprotective in Huntington's disease transgenic mouse model. Mol Neurodegener 2011; 6: 81.
(
10.1186/1750-1326-6-81
) / Mol Neurodegener by X Chen (2011) -
Johri A, Beal MF . Antioxidants in Huntington's disease. Biochim Biophys Acta 2012; 1822: 664–674.
(
10.1016/j.bbadis.2011.11.014
) / Biochim Biophys Acta by A Johri (2012) -
Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum Mol Genet 2008; 17: 3767–3775.
(
10.1093/hmg/ddn273
) / Hum Mol Genet by J Pallos (2008) -
Ferrante RJ, Ryu H, Kubilus JK, D'Mello S, Sugars KL, Lee J et al. Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington's disease. J Neurosci 2004; 24: 10335–10342.
(
10.1523/JNEUROSCI.2599-04.2004
) / J Neurosci by RJ Ferrante (2004) -
Zhang Y, Friedlander RM . Using non-coding small RNAs to develop therapies for Huntington's disease. Gene Ther 2011; 18: 1139–1149.
(
10.1038/gt.2011.170
) / Gene Ther by Y Zhang (2011) -
Ramachandran PS, Keiser MS, Davidson BL . Recent Advances in RNA Interference Therapeutics for CNS Diseases. Neurotherapeutics 2013; 10: 473–485.
(
10.1007/s13311-013-0183-8
) / Neurotherapeutics by PS Ramachandran (2013) -
Scholefield J, Greenberg LJ, Weinberg MS, Arbuthnot PB, Abdelgany A, Wood MJ . Design of RNAi hairpins for mutation-specific silencing of ataxin-7 and correction of a SCA7 phenotype. PLoS One 2009; 4: e7232.
(
10.1371/journal.pone.0007232
) / PLoS One by J Scholefield (2009) -
McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T, Ojeda SR et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease. Mol Ther 2011; 19: 2152–2162.
(
10.1038/mt.2011.219
) / Mol Ther by JL McBride (2011) -
Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ et al. Nonallele-specific silencing of mutant and wild-type Huntingtin demonstrates therapeutic efficacy in Huntington's disease mice. Mol Ther 2009; 17: 1053–1063.
(
10.1038/mt.2009.17
) / Mol Ther by RL Boudreau (2009)
@article{Nalavade_2013, title={Mechanisms of RNA-induced toxicity in CAG repeat disorders}, volume={4}, ISSN={2041-4889}, url={http://dx.doi.org/10.1038/cddis.2013.276}, DOI={10.1038/cddis.2013.276}, number={8}, journal={Cell Death & Disease}, publisher={Springer Science and Business Media LLC}, author={Nalavade, R and Griesche, N and Ryan, D P and Hildebrand, S and Krauß, S}, year={2013}, month=aug, pages={e752–e752} }