Crossref journal-article
Springer Science and Business Media LLC
NPG Asia Materials (297)
Bibliography

Wu, L., Li, X., Wang, S., Zhang, T., Yang, J., Zhang, W., Chen, L., & Yang, J. (2017). Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Materials, 9(1), e343–e343.

Authors 8
  1. Lihua Wu (first)
  2. Xin Li (additional)
  3. Shanyu Wang (additional)
  4. Tiansong Zhang (additional)
  5. Jiong Yang (additional)
  6. Wenqing Zhang (additional)
  7. Lidong Chen (additional)
  8. Jihui Yang (additional)
References 66 Referenced 211
  1. Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P. & Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007). (10.1002/adma.200600527) / Adv. Mater. by MS Dresselhaus (2007)
  2. Heremans, J. P., Wiendlocha, B. & Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012). (10.1039/C1EE02612G) / Energy Environ. Sci. by JP Heremans (2012)
  3. Yang, J., Yip, H.-L. & Jen, A. K.-Y. Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3, 549–565 (2013). (10.1002/aenm.201200514) / Adv. Energy Mater. by J Yang (2013)
  4. Slack, G. A. The thermal conductivity of nonmetallic crystals. Solid State Phys 34, 1–71 (1979). (10.1016/S0081-1947(08)60359-8) / Solid State Phys by GA Slack (1979)
  5. Morelli, D., Jovovic, V. & Heremans, J. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008). (10.1103/PhysRevLett.101.035901) / Phys. Rev. Lett. by D Morelli (2008)
  6. Nielsen, M. D., Ozolins, V. & Heremans, J. P. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570–578 (2013). (10.1039/C2EE23391F) / Energy Environ. Sci. by MD Nielsen (2013)
  7. Zhang, Y., Skoug, E., Cain, J., Ozoliņš, V., Morelli, D. & Wolverton, C. First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors. Phys. Rev. B 85, 054306 (2012). (10.1103/PhysRevB.85.054306) / Phys. Rev. B by Y Zhang (2012)
  8. Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V. P. & Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014). (10.1038/nature13184) / Nature by L-D Zhao (2014)
  9. Sales, B., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996). (10.1126/science.272.5266.1325) / Science by B Sales (1996)
  10. Shi, X., Yang, J., Salvador, J. R., Chi, M., Cho, J. Y., Wang, H., Bai, S., Yang, J., Zhang, W. & Chen, L. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011). (10.1021/ja111199y) / J. Am. Chem. Soc. by X Shi (2011)
  11. Takabatake, T., Suekuni, K., Nakayama, T. & Kaneshita, E. Phonon-glass electron-crystal thermoelectric clathrates: experiments and theory. Rev. Mod. Phys. 86, 669 (2014). (10.1103/RevModPhys.86.669) / Rev. Mod. Phys. by T Takabatake (2014)
  12. Liu, H., Shi, X., Xu, F., Zhang, L., Zhang, W., Chen, L., Li, Q., Uher, C., Day, T. & Snyder, G. J. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012). (10.1038/nmat3273) / Nat. Mater. by H Liu (2012)
  13. Qiu, W., Xi, L., Wei, P., Ke, X., Yang, J. & Zhang, W. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proc. Natl. Acad. Sci. USA. 111, 15031–15035 (2014). (10.1073/pnas.1410349111) / Proc. Natl. Acad. Sci. USA. by W Qiu (2014)
  14. Qiu, W., Wu, L., Ke, X., Yang, J. & Zhang, W. Diverse lattice dynamics in ternary Cu-Sb-Se compounds. Sci. Rep. 5, 13643 (2015). (10.1038/srep13643) / Sci. Rep. by W Qiu (2015)
  15. Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T. & Iversen, B. B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 3, 458–463 (2004). (10.1038/nmat1154) / Nat. Mater. by GJ Snyder (2004)
  16. Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. & Kanatzidis, M. G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004). (10.1126/science.1092963) / Science by KF Hsu (2004)
  17. Poudel, B., Hao, Q., Ma, Y., Lan, Y. C., Minnich, A., Yu, B., Yan, X. A., Wang, D. Z., Muto, A., Vashaee, D., Chen, X. Y., Liu, J. M., Dresselhaus, M. S., Chen, G. & Ren, Z. F. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008). (10.1126/science.1156446) / Science by B Poudel (2008)
  18. Biswas, K., He, J., Blum, I. D., Wu, C.-I., Hogan, T. P., Seidman, D. N., Dravid, V. P. & Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012). (10.1038/nature11439) / Nature by K Biswas (2012)
  19. Hu, L., Wu, H., Zhu, T., Fu, C., He, J., Ying, P. & Zhao, X. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater. 5, 1500411 (2015). (10.1002/aenm.201500411) / Adv. Energy Mater. by L Hu (2015)
  20. Wang, S., Salvador, J. R., Yang, J., Wei, P., Duan, B. & Yang, J. High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics. NPG Asia Mater. 8, e285 (2016). (10.1038/am.2016.77) / NPG Asia Mater. by S Wang (2016)
  21. Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L. & Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011). (10.1038/nature09996) / Nature by Y Pei (2011)
  22. Liu, W., Tan, X., Yin, K., Liu, H., Tang, X., Shi, J., Zhang, Q. & Uher, C. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012). (10.1103/PhysRevLett.108.166601) / Phys. Rev. Lett. by W Liu (2012)
  23. Zhang, J., Liu, R., Cheng, N., Zhang, Y., Yang, J., Uher, C., Shi, X., Chen, L. & Zhang, W. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater. 26, 3848 (2014). (10.1002/adma.201400058) / Adv. Mater. by J Zhang (2014)
  24. Zhang, J., Song, L., Madsen, G. K. H., Fischer, K. F. F., Zhang, W., Shi, X. & Iversen, B. B. Designing high-performance layered thermoelectric materials through orbital engineering. Nat. Commun. 7, 10892 (2016). (10.1038/ncomms10892) / Nat. Commun. by J Zhang (2016)
  25. Zhao, L.-D., Tan, G., Hao, S., He, J., Pei, Y., Chi, H., Wang, H., Gong, S., Xu, H. & Dravid, V. P. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141–144 (2015). (10.1126/science.aad3749) / Science by L-D Zhao (2015)
  26. Pei, Y., Wang, H., Gibbs, Z. M., LaLonde, A. D. & Snyder, G. J. Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency. NPG Asia Mater. 4, e28 (2012). (10.1038/am.2012.52) / NPG Asia Mater. by Y Pei (2012)
  27. Parker, D., Chen, X. & Singh, D. J. High three-dimensional thermoelectric performance from low-dimensional bands. Phys. Rev. Lett. 110, 146601 (2013). (10.1103/PhysRevLett.110.146601) / Phys. Rev. Lett. by D Parker (2013)
  28. Wu, L., Yang, J., Wang, S., Wei, P., Yang, J., Zhang, W. & Chen, L. Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI. Phys. Rev. B 90, 195210 (2014). (10.1103/PhysRevB.90.195210) / Phys. Rev. B by L Wu (2014)
  29. Wu, L., Yang, J., Wang, S., Wei, P., Yang, J., Zhang, W. & Chen, L. Thermopower enhancement in quantum wells with the Rashba effect. Appl. Phys. Lett. 105, 202115 (2014). (10.1063/1.4902134) / Appl. Phys. Lett. by L Wu (2014)
  30. Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S. & Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008). (10.1126/science.1159725) / Science by JP Heremans (2008)
  31. Gelbstein, Y., Davidow, J., Leshem, E., Pinshow, O. & Moisa, S. Significant lattice thermal conductivity reduction following phase separation of the highly efficient GexPb1−xTe thermoelectric alloys. Phys. Status Solidi B 251, 1431–1437 (2014). (10.1002/pssb.201451088) / Phys. Status Solidi B by Y Gelbstein (2014)
  32. Chattopadhyay, T. & Boucherle, J. Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C: Solid State Phys. 20, 1431 (1987). (10.1088/0022-3719/20/10/012) / J. Phys. C: Solid State Phys. by T Chattopadhyay (1987)
  33. Damon, D., Lubell, M. & Mazelsky, R. Nature of the defects in germanium telluride. J. Phys. Chem. Solids 28, 520–522 (1967). (10.1016/0022-3697(67)90323-X) / J. Phys. Chem. Solids by D Damon (1967)
  34. Levin, E., Besser, M. & Hanus, R. Electronic and thermal transport in GeTe: a versatile base for thermoelectric materials. J. Appl. Phys. 114, 083713 (2013). (10.1063/1.4819222) / J. Appl. Phys. by E Levin (2013)
  35. Skrabek, E., Trimmer, D. in CRC Handbook of Thermoelectrics (ed Rowe, D. M. 267–275 (CRC Press, Boca Raton, FL, USA, 1995). / CRC Handbook of Thermoelectrics by E Skrabek (1995)
  36. Chen, Y., Jaworski, C., Gao, Y., Wang, H., Zhu, T., Snyder, G., Heremans, J. & Zhao, X. Transport properties and valence band feature of high-performance (GeTe)85(AgSbTe2 15 thermoelectric materials. New J. Phys. 16, 013057 (2014). (10.1088/1367-2630/16/1/013057) / New J. Phys. by Y Chen (2014)
  37. Levin, E., Cook, B. A., Harringa, J., Bud’ko, S., Venkatasubramanian, R. & Schmidt-Rohr, K. Analysis of Ce- and Yb-Doped TAGS-85 materials with enhanced thermoelectric figure of merit. Adv. Funct. Mater. 21, 441–447 (2011). (10.1002/adfm.201001307) / Adv. Funct. Mater. by E Levin (2011)
  38. Levin, E., Bud'Ko, S. & Schmidt-Rohr, K. Enhancement of thermopower of TAGS-85 high-performance thermoelectric material by doping with the rare earth Dy. Adv. Funct. Mater. 22, 2766–2774 (2012). (10.1002/adfm.201103049) / Adv. Funct. Mater. by E Levin (2012)
  39. Gelbstein, Y., Davidow, J., Girard, S. N., Chung, D. Y. & Kanatzidis, M. Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv. Energy Mater. 3, 815–820 (2013). (10.1002/aenm.201200970) / Adv. Energy Mater. by Y Gelbstein (2013)
  40. Wu, D., Zhao, L.-D., Hao, S., Jiang, Q., Zheng, F., Doak, J. W., Wu, H., Chi, H., Gelbstein, Y. & Uher, C. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J. Am. Chem. Soc. 136, 11412–11419 (2014). (10.1021/ja504896a) / J. Am. Chem. Soc. by D Wu (2014)
  41. Perumal, S., Roychowdhury, S., Negi, D. S., Datta, R. & Biswas, K. High Thermoelectric performance and enhanced mechanical stability of p-type Ge1−xSbxTe. Chem. Mater. 27, 7171–7178 (2015). (10.1021/acs.chemmater.5b03434) / Chem. Mater. by S Perumal (2015)
  42. Yang, J., Xi, L., Qiu, W., Wu, L., Shi, X., Chen, L., Yang, J., Zhang, W., Uher, C. & Singh, D. J. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. npj Comput. Mater. 2, 15015 (2016). (10.1038/npjcompumats.2015.15) / npj Comput. Mater. by J Yang (2016)
  43. Jaworski, C. M., Kulbachinskii, V. & Heremans, J. P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power. Phys. Rev. B 80, 233201 (2009). (10.1103/PhysRevB.80.233201) / Phys. Rev. B by CM Jaworski (2009)
  44. Lan, J. L., Liu, Y. C., Zhan, B., Lin, Y. H., Zhang, B., Yuan, X., Zhang, W., Xu, W. & Nan, C. W. Enhanced thermoelectric properties of Pb-doped BiCuSeO Ceramics. Adv. Mater. 25, 5086–5090 (2013). (10.1002/adma.201301675) / Adv. Mater. by JL Lan (2013)
  45. Zhang, Q., Liao, B., Lan, Y., Lukas, K., Liu, W., Esfarjani, K., Opeil, C., Broido, D., Chen, G. & Ren, Z. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc. Natl. Acad. Sci. USA 110, 13261–13266 (2013). (10.1073/pnas.1305735110) / Proc. Natl. Acad. Sci. USA by Q Zhang (2013)
  46. Mott, N. F. & Davis, E. A. Electronic Processes in Non-Crystalline Materials, (Oxford University Press, Oxford, UK, 1971). / Electronic Processes in Non-Crystalline Materials by NF Mott (1971)
  47. Liu, H., Yuan, X., Lu, P., Shi, X., Xu, F., He, Y., Tang, Y., Bai, S., Zhang, W. & Chen, L. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−xIx . Adv. Mater. 25, 6607–6612 (2013). (10.1002/adma.201302660) / Adv. Mater. by H Liu (2013)
  48. Sun, P., Wei, B., Zhang, J., Tomczak, J. M., Strydom, A., Søndergaard, M., Iversen, B. B. & Steglich, F. Large Seebeck effect by charge-mobility engineering. Nat. Commun. 6, 7475 (2015). (10.1038/ncomms8475) / Nat. Commun. by P Sun (2015)
  49. Wang, S., Sun, Y., Yang, J., Duan, B., Wu, L., Zhang, W. & Yang, J. High thermoelectric performance in Te-free (Bi, Sb)2Se3 by structural transition induced band convergence and chemical bond softening. Energy Environ. Sci. 9, 3436–3447 (2016). (10.1039/C6EE02674E) / Energy Environ. Sci. by S Wang (2016)
  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  52. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  53. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  54. Yang, J., Li, H., Wu, T., Zhang, W., Chen, L. & Yang, J. Evaluation of half-heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008). (10.1002/adfm.200701369) / Adv. Funct. Mater. by J Yang (2008)
  55. Madsen, G. K. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). (10.1016/j.cpc.2006.03.007) / Comput. Phys. Commun. by GK Madsen (2006)
  56. Di Sante, D., Barone, P., Bertacco, R. & Picozzi, S. Electric Control of the Giant Rashba Effect in Bulk GeTe. Adv. Mater. 25, 509–513 (2013). (10.1002/adma.201203199) / Adv. Mater. by D Di Sante (2013)
  57. Ahmad, S., Hoang, K. & Mahanti, S. Ab initio study of deep defect states in narrow band-gap semiconductors: group III impurities in PbTe. Phys. Rev. Lett. 96, 056403 (2006). (10.1103/PhysRevLett.96.056403) / Phys. Rev. Lett. by S Ahmad (2006)
  58. Sun, H., Lu, X., Chi, H., Morelli, D. T. & Uher, C. Highly efficient (In2Te3 x(GeTe)3−3x thermoelectric materials: a substitute for TAGS. Phys. Chem. Chem. Phys. 16, 15570–15575 (2014). (10.1039/C4CP01294A) / Phys. Chem. Chem. Phys. by H Sun (2014)
  59. Gelbstein, Y., Dado, B., Ben-Yehuda, O., Sadia, Y., Dashevsky, Z. & Dariel, M. P. Highly Efficient Ge-Rich GexPb1−xTe thermoelectric alloys. J. Electron. Mater. 39, 2049–2052 (2010). (10.1007/s11664-009-1012-z) / J. Electron. Mater. by Y Gelbstein (2010)
  60. Levin, E. Effects of Ge substitution in GeTe by Ag or Sb on the Seebeck coefficient and carrier concentration derived from Te 125 NMR. Phys. Rev. B 93, 045209 (2016). (10.1103/PhysRevB.93.045209) / Phys. Rev. B by E Levin (2016)
  61. Kolomoets, N., Lev, E. Y. & Sysoeva, L. Nature of charge carriers in GeTe. Sov. Phys. Solid State 5, 2101–2105 (1964). / Sov. Phys. Solid State by N Kolomoets (1964)
  62. Lubell, M. & Mazelsky, R. Carrier compensation in germanium telluride. J. Electrochem. Soc. 110, 520–524 (1963). (10.1149/1.2425805) / J. Electrochem. Soc. by M Lubell (1963)
  63. Gelbstein, Y., Ben-Yehuda, O., Pinhas, E., Edrei, T., Sadia, Y., Dashevsky, Z. & Dariel, M. P. Thermoelectric properties of (Pb,Sn,Ge)Te-Based alloys. J. Electron. Mater. 38, 1478–1482 (2009). (10.1007/s11664-008-0652-8) / J. Electron. Mater. by Y Gelbstein (2009)
  64. Hazan, E., Madar, N., Parag, M., Casian, V., Ben-Yehuda, O. & Gelbstein, Y. Effective electronic mechanisms for optimizing the thermoelectric properties of GeTe-rich alloys. Adv. Electron. Mater. 1, 1500228 (2015). (10.1002/aelm.201500228) / Adv. Electron. Mater. by E Hazan (2015)
  65. Wang, S., Yang, J., Toll, T., Yang, J., Zhang, W. & Tang, X. Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci. Rep. 5, 10136 (2015). (10.1038/srep10136) / Sci. Rep. by S Wang (2015)
  66. Zhang, Y., Wu, L., Zhang, J., Xing, J. & Luo, J. Eutectic microstructures and thermoelectric properties of MnTe-rich precipitates hardened PbTe. Acta Mater. 111, 202–209 (2016). (10.1016/j.actamat.2016.03.059) / Acta Mater. by Y Zhang (2016)
Dates
Type When
Created 8 years, 7 months ago (Jan. 20, 2017, 2:02 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:18 a.m.)
Indexed 3 hours, 32 minutes ago (Aug. 27, 2025, 12:21 p.m.)
Issued 8 years, 7 months ago (Jan. 1, 2017)
Published 8 years, 7 months ago (Jan. 1, 2017)
Published Online 8 years, 7 months ago (Jan. 20, 2017)
Published Print 8 years, 7 months ago (Jan. 1, 2017)
Funders 0

None

@article{Wu_2017, title={Resonant level-induced high thermoelectric response in indium-doped GeTe}, volume={9}, ISSN={1884-4057}, url={http://dx.doi.org/10.1038/am.2016.203}, DOI={10.1038/am.2016.203}, number={1}, journal={NPG Asia Materials}, publisher={Springer Science and Business Media LLC}, author={Wu, Lihua and Li, Xin and Wang, Shanyu and Zhang, Tiansong and Yang, Jiong and Zhang, Wenqing and Chen, Lidong and Yang, Jihui}, year={2017}, month=jan, pages={e343–e343} }