Crossref journal-article
Springer Science and Business Media LLC
Nature Genetics (297)
Bibliography

Khanna, K. K., & Jackson, S. P. (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genetics, 27(3), 247–254.

Authors 2
  1. Kum Kum Khanna (first)
  2. Stephen P. Jackson (additional)
References 76 Referenced 1,846
  1. Lee, S.E. et al. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulates adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998). (10.1016/S0092-8674(00)81482-8) / Cell by SE Lee (1998)
  2. Rich, T., Allen, R.L & Wyllie, A.H. Defying death after DNA damage. Nature 407, 777–783 (2000). (10.1038/35037717) / Nature by T Rich (2000)
  3. Nikiforova, M.N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000) (10.1126/science.290.5489.138) / Science by MN Nikiforova (2000)
  4. Vamvakas, S., Vock, E.H. & Lutz, W.K. On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit. Rev. Toxicol. 27, 155–174 (1997). (10.3109/10408449709021617) / Crit. Rev. Toxicol. by S Vamvakas (1997)
  5. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000). (10.1038/35015097) / Nature by C Richardson (2000)
  6. Haber, J.E. Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264 (2000). (10.1016/S0168-9525(00)02022-9) / Trends Genet. by JE Haber (2000)
  7. Karran, P. DNA double strand break repair in mammalian cells. Curr. Opin. Genet. Dev. 10, 144–150 (2000). (10.1016/S0959-437X(00)00069-1) / Curr. Opin. Genet. Dev. by P Karran (2000)
  8. Johnson, R.D. & Jasin, M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19, 3398–3407 (2000). (10.1093/emboj/19.13.3398) / EMBO J. by RD Johnson (2000)
  9. Tsuzuki, T. et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93, 6236–6240 (1996). (10.1073/pnas.93.13.6236) / Proc. Natl. Acad. Sci. USA by T Tsuzuki (1996)
  10. Tashiro, S., Walter, J., Shinohara, A., Kamada, N. & Cremer, T. Rad51 accumulation at sites of DNA damage and in post replicative chromatin. J. Cell Biol. 150, 283–291 (2000). (10.1083/jcb.150.2.283) / J. Cell Biol. by S Tashiro (2000)
  11. Liu, N. et al. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell 1, 783–793 (1998). (10.1016/S1097-2765(00)80078-7) / Mol. Cell by N Liu (1998)
  12. Essers, J. et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89, 195–204 (1997). (10.1016/S0092-8674(00)80199-3) / Cell by J Essers (1997)
  13. Hiramoto, T. et al. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogene 18, 3422–3426 (1999). (10.1038/sj.onc.1202691) / Oncogene by T Hiramoto (1999)
  14. Matsuda, M. et al. Mutations in the Rad54 recombination gene in primary cancer. Oncogene 18, 3427–3430 (1999). (10.1038/sj.onc.1202692) / Oncogene by M Matsuda (1999)
  15. Rijkers, T. et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18, 6423–6429 (1998). (10.1128/MCB.18.11.6423) / Mol. Cell. Biol. by T Rijkers (1998)
  16. Haber, J.E. DNA repair. Gatekeepers of recombination. Nature 398, 665–667 (1999). (10.1038/19423) / Nature by JE Haber (1999)
  17. Welcsh, P.L., Owens, K.N. & King, M.C. Insights into the functions of BRCA1 and BRCA2. Trends Genet. 16, 69–74 (2000). (10.1016/S0168-9525(99)01930-7) / Trends Genet. by PL Welcsh (2000)
  18. Hakem, R., de la Pompa, J.L., Elia, A., Potter, J. & Mak, T.W. Partial rescue of Brca1 (5-6) early embryonic lethality by p53 or p21 null mutation. Nature Genet. 16, 298–302 (1997). (10.1038/ng0797-298) / Nature Genet. by R Hakem (1997)
  19. Sharan, S.K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997). (10.1038/386804a0) / Nature by SK Sharan (1997)
  20. Bochar, D.A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265 (2000). (10.1016/S0092-8674(00)00030-1) / Cell by DA Bochar (2000)
  21. Zhong, Q. et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285, 747–750 (1999). (10.1126/science.285.5428.747) / Science by Q Zhong (1999)
  22. Phillips, K.A. et al. Frequency of p53 mutations in breast carcinomas from Ashkenazi Jewish carriers of BRCA1 mutations. J. Natl. Cancer Inst. 91, 469–473 (1999). (10.1093/jnci/91.5.469) / J. Natl. Cancer Inst. by KA Phillips (1999)
  23. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet. 22, 37–43 (1999). (10.1038/8743) / Nature Genet. by X Xu (1999)
  24. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999). (10.1016/S1097-2765(00)80466-9) / Mol. Cell by X Xu (1999)
  25. Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1–10 (1999). (10.1016/S1097-2765(00)80182-3) / Mol. Cell by H Lee (1999)
  26. Khanna, K.K. ATM gene and cancer risk: a continuing debate. J. Natl. Cancer Inst. 92, 795–802 (2000). (10.1093/jnci/92.10.795) / J. Natl. Cancer Inst. by KK Khanna (2000)
  27. Petiniot, L.K. et al. Recombinase-activating gene (RAG) 2-mediated V(D)J recombination is not essential for tumorigenesis in Atm-deficient mice. Proc. Natl. Acad. Sci. USA 97, 6664–6669 (2000). (10.1073/pnas.97.12.6664) / Proc. Natl. Acad. Sci. USA by LK Petiniot (2000)
  28. Bishop, A.J., Barlow, C., Wynshaw-Boris, A.J. & Schiestl, R.H. Atm deficiency causes an increased frequency of intrachromosomal homologous recombination in mice. Cancer Res. 60, 395–399 (2000). / Cancer Res. by AJ Bishop (2000)
  29. Morrison, C. et al. The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J. 19, 463–471 (2000). (10.1093/emboj/19.3.463) / EMBO J. by C Morrison (2000)
  30. Barlow, C. et al. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 125, 4007–4017 (1998). (10.1242/dev.125.20.4007) / Development by C Barlow (1998)
  31. Rotman, G. & Shiloh, Y. ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135–6144 (1999). (10.1038/sj.onc.1203124) / Oncogene by G Rotman (1999)
  32. Saintigny, Y., Rouillard, D., Chaput, B., Soussi, T. & Lopez, B.S. Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 18, 3553–3563 (1999). (10.1038/sj.onc.1202941) / Oncogene by Y Saintigny (1999)
  33. Smilenov, L.B., Dhar, S. & Pandita, T.K. Altered telomere nuclear matrix interactions and nucleosomal periodicity in ataxia telangiectasia cells before and after ionizing radiation treatment. Mol. Cell. Biol. 19, 6963–6971 (1999). (10.1128/MCB.19.10.6963) / Mol. Cell. Biol. by LB Smilenov (1999)
  34. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000). (10.1016/S0092-8674(00)00051-9) / Cell by T Ikura (2000)
  35. Karow, J.K., Wu, L. & Hickson, I.D. RecQ family helicases: roles in cancer and aging. Curr. Opin. Genet. Dev. 10, 32–38 (2000). (10.1016/S0959-437X(99)00039-8) / Curr. Opin. Genet. Dev. by JK Karow (2000)
  36. Smith, G.C. & Jackson, S.P. The DNA-dependent protein kinase. Genes Dev. 13, 916–934 (1999). (10.1101/gad.13.8.916) / Genes Dev. by GC Smith (1999)
  37. Petrini, J.H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell. Biol. 12, 293–296 (2000). (10.1016/S0955-0674(00)00091-0) / Curr. Opin. Cell. Biol. by JH Petrini (2000)
  38. Carney, J.P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998). (10.1016/S0092-8674(00)81175-7) / Cell by JP Carney (1998)
  39. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998). (10.1016/S0092-8674(00)81174-5) / Cell by R Varon (1998)
  40. Stewart, G.S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 1999). (10.1016/S0092-8674(00)81547-0)
  41. Lim, D.S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000). (10.1038/35007091) / Nature by DS Lim (2000)
  42. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115–119 (2000). (10.1038/75508) / Nature Genet. by M Gatei (2000)
  43. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000). (10.1038/35013083) / Nature by S Zhao (2000)
  44. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477–482 (2000). (10.1038/35013089) / Nature by X Wu (2000)
  45. Riballo, E. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol. 9, 699–702 (1999). (10.1016/S0960-9822(99)80311-X) / Curr. Biol. by E Riballo (1999)
  46. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000). (10.1038/35009138) / Nature by Y Gao (2000)
  47. Frank, K.M. et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol. Cell 5, 993–1002 (2000). (10.1016/S1097-2765(00)80264-6) / Mol. Cell by KM Frank (2000)
  48. Gu, Y. et al. Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc. Natl. Acad. Sci. USA 97, 2668–2673 (2000). (10.1073/pnas.97.6.2668) / Proc. Natl. Acad. Sci. USA by Y Gu (2000)
  49. Lee, Y., Barnes, D.E., Lindahl, T. & McKinnon, P.J. Defective neurogenesis resulting from DNA ligase IV deficiency requires Atm. Genes Dev. 14, 2576–2580 (2000). (10.1101/gad.837100) / Genes Dev. by Y Lee (2000)
  50. Oka, A. & Takashima, S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci. Lett. 252, 195–198 (1998). (10.1016/S0304-3940(98)00576-X) / Neurosci. Lett. by A Oka (1998)
  51. Difilippantonio, M.J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000). (10.1038/35006670) / Nature by MJ Difilippantonio (2000)
  52. Vanasse, G.J. et al. Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. J. Clin. Invest. 103, 1669–1675 (1999). (10.1172/JCI6658) / J. Clin. Invest. by GJ Vanasse (1999)
  53. Nacht, M. et al. Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dev. 10, 2055–2066 (1996). (10.1101/gad.10.16.2055) / Genes Dev. by M Nacht (1996)
  54. Jeggo, P.A., Carr, A.M. & Lehmann, A.R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 14, 312–316 (1998). (10.1016/S0168-9525(98)01511-X) / Trends Genet. by PA Jeggo (1998)
  55. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42–49 (2000). (10.1038/35003506) / Nature by H Tanaka (2000)
  56. Bashkirov, V.I., King, J.S., Bashkirova, E.V., Schmuckli-Maurer, J. & Heyer, W.D. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol. Cell. Biol. 20, 4393–4404 (2000). (10.1128/MCB.20.12.4393-4404.2000) / Mol. Cell. Biol. by VI Bashkirov (2000)
  57. Kim, S.T., Lim, D.S., Canman, C.E. & Kastan, M.B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538–37543 (1999). (10.1074/jbc.274.53.37538) / J. Biol. Chem. by ST Kim (1999)
  58. Cliby, W.A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 2, 159–169 (1998). (10.1093/emboj/17.1.159) / EMBO J. by WA Cliby (1998)
  59. Tibbetts, R.S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999). (10.1101/gad.13.2.152) / Genes Dev. by RS Tibbetts (1999)
  60. Brown, E.J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000). (10.1101/gad.14.4.397) / Genes Dev. by EJ Brown (2000)
  61. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000). (10.1016/S0960-9822(00)00447-4) / Curr. Biol. by A de Klein (2000)
  62. Bork, P. et al. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76 (1997). (10.1096/fasebj.11.1.9034168) / FASEB J. by P Bork (1997)
  63. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000). (10.1101/gad.14.8.927) / Genes Dev. by Y Wang (2000)
  64. Harkin, D.P. et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586 (1999). (10.1016/S0092-8674(00)80769-2) / Cell by DP Harkin (1999)
  65. MacLachlan, T.K. et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J. Biol. Chem. 275, 2777–2785 (2000). (10.1074/jbc.275.4.2777) / J. Biol. Chem. by TK MacLachlan (2000)
  66. Zhou, B.-B. et al. Caffeine abolishes the mammalian G2/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem. 275, 10342–10348 (2000). (10.1074/jbc.275.14.10342) / J. Biol. Chem. by B-B Zhou (2000)
  67. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA 97, 10389–10394 (2000). (10.1073/pnas.190030497) / Proc. Natl. Acad. Sci. USA by S Matsuoka (2000)
  68. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–501 (1997). (10.1126/science.277.5331.1497) / Science by Y Sanchez (1997)
  69. Takai, H. et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice. Genes Dev. 12, 1439–1447 (2000). (10.1101/gad.14.12.1439) / Genes Dev. by H Takai (2000)
  70. Liu, Q. et al. Chk1 is an essential kinase that is regulated by ATR and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000). (10.1101/gad.840500) / Genes Dev. by Q Liu (2000)
  71. O'Connell, M.J., Walworth, N.C. & Carr, A.M. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 10, 296–303 (2000). (10.1016/S0962-8924(00)01773-6) / Trends Cell Biol. by MJ O'Connell (2000)
  72. Passalaris, T.M., Benanti, J.A., Gewin, L., Kiyono, T. & Galloway, D.A. The G(2) checkpoint is maintained by redundant pathways. Mol. Cell. Biol. 19, 5872–5881 (1999). (10.1128/MCB.19.9.5872) / Mol. Cell. Biol. by TM Passalaris (1999)
  73. Caspari, T. How to activate p53. Curr. Biol. 10, R315–317 (2000). (10.1016/S0960-9822(00)00439-5) / Curr. Biol. by T Caspari (2000)
  74. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000). (10.1126/science.287.5459.1824) / Science by A Hirao (2000)
  75. Bell, D. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999). (10.1126/science.286.5449.2528) / Science by D Bell (1999)
  76. Lee, J.S., Collins, K.M., Brown, A.L., Lee, C.H. & Chung, J.H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000). (10.1038/35004614) / Nature by JS Lee (2000)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:48 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 4:23 p.m.)
Indexed 1 day, 20 hours ago (Aug. 29, 2025, 6:40 a.m.)
Issued 24 years, 5 months ago (March 1, 2001)
Published 24 years, 5 months ago (March 1, 2001)
Published Print 24 years, 5 months ago (March 1, 2001)
Funders 0

None

@article{Khanna_2001, title={DNA double-strand breaks: signaling, repair and the cancer connection}, volume={27}, ISSN={1546-1718}, url={http://dx.doi.org/10.1038/85798}, DOI={10.1038/85798}, number={3}, journal={Nature Genetics}, publisher={Springer Science and Business Media LLC}, author={Khanna, Kum Kum and Jackson, Stephen P.}, year={2001}, month=mar, pages={247–254} }