Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Rockman, H. A., Koch, W. J., & Lefkowitz, R. J. (2002). Seven-transmembrane-spanning receptors and heart function. Nature, 415(6868), 206–212.

Authors 3
  1. Howard A. Rockman (first)
  2. Walter J. Koch (additional)
  3. Robert J. Lefkowitz (additional)
References 77 Referenced 773
  1. Hoffman, B. B. & Lefkowitz, R. J. in Goodman and Gilman's The Pharmacological Basis of Therapeutics 9th edn (eds Hardman, J. G., Gilman, A. G. & Limbird, L. E.) 199–248 (McGraw-Hill, New York, 1996). / Goodman and Gilman's The Pharmacological Basis of Therapeutics by BB Hoffman (1996)
  2. Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997). (10.1146/annurev.pharmtox.37.1.167) / Annu. Rev. Pharmacol. Toxicol. by DE Clapham (1997)
  3. Molkentin, J. D. & Dorn, I. G. II Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001). (10.1146/annurev.physiol.63.1.391) / Annu. Rev. Physiol. by JD Molkentin (2001)
  4. Lefkowitz, R. J. G protein-coupled receptors. III. New roles for receptor kinases and β-ARrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680 (1998). (10.1074/jbc.273.30.18677) / J. Biol. Chem. by RJ Lefkowitz (1998)
  5. Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998). (10.1146/annurev.biochem.67.1.653) / Annu. Rev. Biochem. by JA Pitcher (1998)
  6. Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S. & Caron, M. G. The interaction of β-ARrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J. Biol. Chem. 275, 23120–23126 (2000). (10.1074/jbc.M002581200) / J. Biol. Chem. by SA Laporte (2000)
  7. DeFea, K. A. et al. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-ARrestin-dependent scaffolding complex. Proc. Natl Acad. Sci. USA 97, 11086–11091 (2000). (10.1073/pnas.190276697) / Proc. Natl Acad. Sci. USA by KA DeFea (2000)
  8. Luttrell, L. M. et al. β-ARrestin-dependent formation of β2 adrenergic receptor–Src protein kinase complexes. Science 283, 655–661 (1999). (10.1126/science.283.5402.655) / Science by LM Luttrell (1999)
  9. DeFea, K. A. et al. β-ARrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267–1281 (2000). (10.1083/jcb.148.6.1267) / J. Cell Biol. by KA DeFea (2000)
  10. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997). (10.1146/annurev.biochem.66.1.511) / Annu. Rev. Biochem. by SL Schmid (1997)
  11. Luttrell, L. M. et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl Acad. Sci. USA 98, 2449–2454 (2001). (10.1073/pnas.041604898) / Proc. Natl Acad. Sci. USA by LM Luttrell (2001)
  12. McDonald, P. H. et al. β-ARrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577 (2000). (10.1126/science.290.5496.1574) / Science by PH McDonald (2000)
  13. Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-ARrestin. Science 294, 1307–1313 (2001). (10.1126/science.1063866) / Science by SK Shenoy (2001)
  14. Chien, K. R. Stress pathways and heart failure. Cell 98, 555–558 (1999). (10.1016/S0092-8674(00)80043-4) / Cell by KR Chien (1999)
  15. Esposito, G. et al. Cardiac overexpression of a Gq inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activity in in vivo pressure overload. Circulation 103, 1453–1458 (2001). (10.1161/01.CIR.103.10.1453) / Circulation by G Esposito (2001)
  16. Rapacciuolo, A. et al. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol. 38, 876–882 (2001). (10.1016/S0735-1097(01)01433-4) / J. Am. Coll. Cardiol. by A Rapacciuolo (2001)
  17. Naga Prasad, S. V., Esposito, G., Mao, L., Koch, W. J. & Rockman, H. A. Gβγ-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J. Biol. Chem. 275, 4693–4698 (2000). (10.1074/jbc.275.7.4693) / J. Biol. Chem. by SV Naga Prasad (2000)
  18. Choi, D. J., Koch, W. J., Hunter, J. J. & Rockman, H. A. Mechanism of β-adrenergic receptor desensitization in cardiac hypertrophy is increased β-adrenergic receptor kinase. J. Biol. Chem. 272, 17223–17229 (1997). (10.1074/jbc.272.27.17223) / J. Biol. Chem. by DJ Choi (1997)
  19. Knowlton, K. U. et al. The α1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J. Biol. Chem. 268, 15374–15380 (1993). (10.1016/S0021-9258(18)82267-0) / J. Biol. Chem. by KU Knowlton (1993)
  20. Sugden, P. H. Signaling in myocardial hypertrophy: life after calcineurin? Circ. Res. 84, 633–646 (1999). (10.1161/01.RES.84.6.633) / Circ. Res. by PH Sugden (1999)
  21. D'Angelo, D. D. et al. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc. Natl Acad. Sci. USA 94, 8121–8126 (1997). (10.1073/pnas.94.15.8121) / Proc. Natl Acad. Sci. USA by DD D'Angelo (1997)
  22. Hein, L. et al. Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc. Natl Acad. Sci. USA 94, 6391–6396 (1997). (10.1073/pnas.94.12.6391) / Proc. Natl Acad. Sci. USA by L Hein (1997)
  23. Choukroun, G. et al. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J. Clin. Invest. 104, 391–398 (1999). (10.1172/JCI6350) / J. Clin. Invest. by G Choukroun (1999)
  24. Rockman, H. A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl Acad. Sci. USA 88, 8277–8281 (1991). (10.1073/pnas.88.18.8277) / Proc. Natl Acad. Sci. USA by HA Rockman (1991)
  25. Akhter, S. A. et al. Targeting the receptor–Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280, 574–577 (1998). (10.1126/science.280.5363.574) / Science by SA Akhter (1998)
  26. Grossman, W., Jones, D. & McLaurin, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56–64 (1975). (10.1172/JCI108079) / J. Clin. Invest. by W Grossman (1975)
  27. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N. Engl. J. Med. 322, 1561–1566 (1990). (10.1056/NEJM199005313222203) / N. Engl. J. Med. by D Levy (1990)
  28. Esposito, G. et al. Genetic alterations that inhibit in vivo pressure overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105, 85–92 (2002). (10.1161/hc0102.101365) / Circulation by G Esposito (2002)
  29. Leimbach, W. N. Jr et al. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73, 913–919 (1986). (10.1161/01.CIR.73.5.913) / Circulation by WN Leimbach Jr (1986)
  30. Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984). (10.1056/NEJM198409273111303) / N. Engl. J. Med. by JN Cohn (1984)
  31. Bristow, M. R. Why does the myocardium fail? Insights from basic science. Lancet 352 (Suppl. I), 8–14 (1998). (10.1016/S0140-6736(98)90311-7) / Lancet by MR Bristow (1998)
  32. Packer, M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20, 248–254 (1992). (10.1016/0735-1097(92)90167-L) / J. Am. Coll. Cardiol. by M Packer (1992)
  33. Ungerer, M. et al. Expression of β-ARrestins and β-adrenergic receptor kinases in the failing human heart. Circ. Res. 74, 206–213 (1994). (10.1161/01.RES.74.2.206) / Circ. Res. by M Ungerer (1994)
  34. Feldman, A. M. et al. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J. Clin. Invest. 82, 189–197 (1988). (10.1172/JCI113569) / J. Clin. Invest. by AM Feldman (1988)
  35. Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997). (10.1038/36362) / Nature by Y Daaka (1997)
  36. Zhu, W. Z. et al. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl Acad. Sci. USA 98, 1607–1612 (2001). (10.1073/pnas.98.4.1607) / Proc. Natl Acad. Sci. USA by WZ Zhu (2001)
  37. Green, S. A., Cole, G., Jacinto, M., Innis, M. & Liggett, S. B. A polymorphism of the human β2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J. Biol. Chem. 268, 23116–23121 (1993). (10.1016/S0021-9258(19)49434-9) / J. Biol. Chem. by SA Green (1993)
  38. Podlowski, S. et al. β1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? J. Mol. Med. 78, 87–93 (2000). (10.1007/s001090000080) / J. Mol. Med. by S Podlowski (2000)
  39. Liggett, S. B. et al. The Ile164 β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J. Clin. Invest. 102, 1534–1539 (1998). (10.1172/JCI4059) / J. Clin. Invest. by SB Liggett (1998)
  40. Wagoner, L. E. et al. Polymorphisms of the β2-adrenergic receptor determine exercise capacity in patients with heart failure. Circ. Res. 86, 834–840 (2000). (10.1161/01.RES.86.8.834) / Circ. Res. by LE Wagoner (2000)
  41. Collins, F. S. Shattuck lecture—medical and societal consequences of the human genome project. N. Engl. J. Med. 341, 28–37 (1999). (10.1056/NEJM199907013410106) / N. Engl. J. Med. by FS Collins (1999)
  42. Epstein, S. E. & Braunwald, E. The effect of β-adrenergic blockade on patterns of urinary sodium excretion. Studies in normal subjects and in patients with heart disease. Ann. Intern. Med. 65, 20–27 (1966). (10.7326/0003-4819-65-1-20) / Ann. Intern. Med. by SE Epstein (1966)
  43. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999). (10.1016/S0140-6736(98)11181-9)
  44. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 353, 2001–2007 (1999). (10.1016/S0140-6736(99)04440-2)
  45. Packer, M. et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N. Engl. J. Med. 334, 1349–1355 (1996). (10.1056/NEJM199605233342101) / N. Engl. J. Med. by M Packer (1996)
  46. Packer, M. et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001). (10.1056/NEJM200105313442201) / N. Engl. J. Med. by M Packer (2001)
  47. Australia/New Zealand Heart Failure Research Collaborative Group. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Lancet 349, 375–380 (1997). (10.1016/S0140-6736(97)80008-6)
  48. Esposito, G. et al. Cellular and functional defects in a mouse model of heart failure. Am. J. Physiol. Heart Circ. Physiol. 279, H3101–H3112 (2000). (10.1152/ajpheart.2000.279.6.H3101) / Am. J. Physiol. Heart Circ. Physiol. by G Esposito (2000)
  49. Koch, W. J., Lefkowitz, R. J. & Rockman, H. A. Functional consequences of altering myocardial adrenergic receptor signaling. Annu. Rev. Physiol. 62, 237–260 (2000). (10.1146/annurev.physiol.62.1.237) / Annu. Rev. Physiol. by WJ Koch (2000)
  50. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA 96, 7059–7064 (1999). (10.1073/pnas.96.12.7059) / Proc. Natl Acad. Sci. USA by S Engelhardt (1999)
  51. Milano, C. A. et al. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 264, 582–586 (1994). (10.1126/science.8160017) / Science by CA Milano (1994)
  52. Liggett, S. B. et al. Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101, 1707–1714 (2000). (10.1161/01.CIR.101.14.1707) / Circulation by SB Liggett (2000)
  53. Rohrer, D. K. Physiological consequences of β-adrenergic receptor disruption. J. Mol. Med. 76, 764–772 (1998). (10.1007/s001090050278) / J. Mol. Med. by DK Rohrer (1998)
  54. Chruscinski, A. J. et al. Targeted disruption of the β2 adrenergic receptor gene. J. Biol. Chem. 274, 16694–16700 (1999). (10.1074/jbc.274.24.16694) / J. Biol. Chem. by AJ Chruscinski (1999)
  55. Communal, C., Singh, K., Sawyer, D. B. & Colucci, W. S. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100, 2210–2212 (1999). (10.1161/01.CIR.100.22.2210) / Circulation by C Communal (1999)
  56. Dorn, G. W. II Tepe, N. M., Lorenz, J. N., Koch, W. J. & Liggett, S. B. Low- and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαq-overexpressing mice. Proc. Natl Acad. Sci. USA 96, 6400–6405 (1999). (10.1073/pnas.96.11.6400) / Proc. Natl Acad. Sci. USA by GW Dorn II (1999)
  57. Rockman, H. A. et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA 95, 7000–7005 (1998). (10.1073/pnas.95.12.7000) / Proc. Natl Acad. Sci. USA by HA Rockman (1998)
  58. Freeman, K. et al. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J. Clin. Invest. 107, 967–974 (2001). (10.1172/JCI12083) / J. Clin. Invest. by K Freeman (2001)
  59. Akhter, S. A. et al. Restoration of β-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc. Natl Acad. Sci. USA 94, 12100–12105 (1997). (10.1073/pnas.94.22.12100) / Proc. Natl Acad. Sci. USA by SA Akhter (1997)
  60. Maurice, J. P. et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary β2-adrenergic receptor gene delivery. J. Clin. Invest. 104, 21–29 (1999). (10.1172/JCI6026) / J. Clin. Invest. by JP Maurice (1999)
  61. Shah, A. S. et al. Intracoronary adenovirus-mediated delivery and overexpression of the β2-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation 101, 408–414 (2000). (10.1161/01.CIR.101.4.408) / Circulation by AS Shah (2000)
  62. Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999). (10.1016/S0092-8674(00)81662-1) / Cell by S Minamisawa (1999)
  63. Roth, D. M. et al. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99, 3099–3102 (1999). (10.1161/01.CIR.99.24.3099) / Circulation by DM Roth (1999)
  64. Koch, W. J. et al. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a β-ARK inhibitor. Science 268, 1350–1353 (1995). (10.1126/science.7761854) / Science by WJ Koch (1995)
  65. Jaber, M. et al. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc. Natl Acad. Sci. USA 93, 12974–12979 (1996). (10.1073/pnas.93.23.12974) / Proc. Natl Acad. Sci. USA by M Jaber (1996)
  66. Rockman, H. A. et al. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc. Natl Acad. Sci. USA 93, 9954–9959 (1996). (10.1073/pnas.93.18.9954) / Proc. Natl Acad. Sci. USA by HA Rockman (1996)
  67. Rockman, H. A. et al. Control of myocardial contractile function by the level of β-adrenergic receptor kinase 1 in gene-targeted mice. J. Biol. Chem. 273, 18180–18184 (1998). (10.1074/jbc.273.29.18180) / J. Biol. Chem. by HA Rockman (1998)
  68. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997). (10.1016/S0092-8674(00)81878-4) / Cell by S Arber (1997)
  69. Cho, M. C. et al. Defective β-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. J. Biol. Chem. 274, 22251–22256 (1999). (10.1074/jbc.274.32.22251) / J. Biol. Chem. by MC Cho (1999)
  70. Freeman, K. et al. Progression from hypertrophic to dilated cardiomyopathy in mice that express a mutant myosin transgene. Am. J. Physiol. Heart Circ. Physiol. 280, H151–H159 (2001). (10.1152/ajpheart.2001.280.1.H151) / Am. J. Physiol. Heart Circ. Physiol. by K Freeman (2001)
  71. Harding, V. B., Jones, L. R., Lefkowitz, R. J., Koch, W. J. & Rockman, H. A. Cardiac β ARK1 inhibition prolongs survival and augments β-blocker therapy in a mouse model of severe heart failure. Proc. Natl Acad. Sci. USA 98, 5809–5814 (2001). (10.1073/pnas.091102398) / Proc. Natl Acad. Sci. USA by VB Harding (2001)
  72. White, D. C. et al. Preservation of myocardial β-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl Acad. Sci. USA 97, 5428–5433 (2000). (10.1073/pnas.090091197) / Proc. Natl Acad. Sci. USA by DC White (2000)
  73. Shah, A. S. et al. In vivo ventricular gene delivery of a β-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103, 1311–1316 (2001). (10.1161/01.CIR.103.9.1311) / Circulation by AS Shah (2001)
  74. Naga Prasad, S. V., Barak, L. S., Rapacciuolo, A., Caron, M. G. & Rockman, H. A. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by β-adrenergic receptor Kinase 1. A role in receptor sequestration. J. Biol. Chem. 276, 18953–18959 (2001). (10.1074/jbc.M102376200) / J. Biol. Chem. by SV Naga Prasad (2001)
  75. The Xamoterol in Severe Heart Failure Study Group. Xamoterol in severe heart failure. Lancet 336, 1–6 (1990). (10.1016/0140-6736(90)91517-E)
  76. Iaccarino, G., Tomhave, E. D., Lefkowitz, R. J. & Koch, W. J. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation 98, 1783–1789 (1998). (10.1161/01.CIR.98.17.1783) / Circulation by G Iaccarino (1998)
  77. McNamara, D. M. et al. Pharmacogenetic interactions between β-blocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Circulation 103, 1644–1648 (2001).7 (10.1161/01.CIR.103.12.1644) / Circulation by DM McNamara (2001)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:30 a.m.)
Deposited 2 years, 3 months ago (May 17, 2023, 8:23 p.m.)
Indexed 1 week, 6 days ago (Aug. 19, 2025, 7:09 a.m.)
Issued 23 years, 8 months ago (Jan. 1, 2002)
Published 23 years, 8 months ago (Jan. 1, 2002)
Published Print 23 years, 8 months ago (Jan. 1, 2002)
Funders 0

None

@article{Rockman_2002, title={Seven-transmembrane-spanning receptors and heart function}, volume={415}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/415206a}, DOI={10.1038/415206a}, number={6868}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Rockman, Howard A. and Koch, Walter J. and Lefkowitz, Robert J.}, year={2002}, month=jan, pages={206–212} }