Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
77
Referenced
773
- Hoffman, B. B. & Lefkowitz, R. J. in Goodman and Gilman's The Pharmacological Basis of Therapeutics 9th edn (eds Hardman, J. G., Gilman, A. G. & Limbird, L. E.) 199–248 (McGraw-Hill, New York, 1996). / Goodman and Gilman's The Pharmacological Basis of Therapeutics by BB Hoffman (1996)
-
Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).
(
10.1146/annurev.pharmtox.37.1.167
) / Annu. Rev. Pharmacol. Toxicol. by DE Clapham (1997) -
Molkentin, J. D. & Dorn, I. G. II Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001).
(
10.1146/annurev.physiol.63.1.391
) / Annu. Rev. Physiol. by JD Molkentin (2001) -
Lefkowitz, R. J. G protein-coupled receptors. III. New roles for receptor kinases and β-ARrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680 (1998).
(
10.1074/jbc.273.30.18677
) / J. Biol. Chem. by RJ Lefkowitz (1998) -
Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).
(
10.1146/annurev.biochem.67.1.653
) / Annu. Rev. Biochem. by JA Pitcher (1998) -
Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S. & Caron, M. G. The interaction of β-ARrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J. Biol. Chem. 275, 23120–23126 (2000).
(
10.1074/jbc.M002581200
) / J. Biol. Chem. by SA Laporte (2000) -
DeFea, K. A. et al. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-ARrestin-dependent scaffolding complex. Proc. Natl Acad. Sci. USA 97, 11086–11091 (2000).
(
10.1073/pnas.190276697
) / Proc. Natl Acad. Sci. USA by KA DeFea (2000) -
Luttrell, L. M. et al. β-ARrestin-dependent formation of β2 adrenergic receptor–Src protein kinase complexes. Science 283, 655–661 (1999).
(
10.1126/science.283.5402.655
) / Science by LM Luttrell (1999) -
DeFea, K. A. et al. β-ARrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267–1281 (2000).
(
10.1083/jcb.148.6.1267
) / J. Cell Biol. by KA DeFea (2000) -
Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997).
(
10.1146/annurev.biochem.66.1.511
) / Annu. Rev. Biochem. by SL Schmid (1997) -
Luttrell, L. M. et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl Acad. Sci. USA 98, 2449–2454 (2001).
(
10.1073/pnas.041604898
) / Proc. Natl Acad. Sci. USA by LM Luttrell (2001) -
McDonald, P. H. et al. β-ARrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577 (2000).
(
10.1126/science.290.5496.1574
) / Science by PH McDonald (2000) -
Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-ARrestin. Science 294, 1307–1313 (2001).
(
10.1126/science.1063866
) / Science by SK Shenoy (2001) -
Chien, K. R. Stress pathways and heart failure. Cell 98, 555–558 (1999).
(
10.1016/S0092-8674(00)80043-4
) / Cell by KR Chien (1999) -
Esposito, G. et al. Cardiac overexpression of a Gq inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activity in in vivo pressure overload. Circulation 103, 1453–1458 (2001).
(
10.1161/01.CIR.103.10.1453
) / Circulation by G Esposito (2001) -
Rapacciuolo, A. et al. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol. 38, 876–882 (2001).
(
10.1016/S0735-1097(01)01433-4
) / J. Am. Coll. Cardiol. by A Rapacciuolo (2001) -
Naga Prasad, S. V., Esposito, G., Mao, L., Koch, W. J. & Rockman, H. A. Gβγ-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J. Biol. Chem. 275, 4693–4698 (2000).
(
10.1074/jbc.275.7.4693
) / J. Biol. Chem. by SV Naga Prasad (2000) -
Choi, D. J., Koch, W. J., Hunter, J. J. & Rockman, H. A. Mechanism of β-adrenergic receptor desensitization in cardiac hypertrophy is increased β-adrenergic receptor kinase. J. Biol. Chem. 272, 17223–17229 (1997).
(
10.1074/jbc.272.27.17223
) / J. Biol. Chem. by DJ Choi (1997) -
Knowlton, K. U. et al. The α1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J. Biol. Chem. 268, 15374–15380 (1993).
(
10.1016/S0021-9258(18)82267-0
) / J. Biol. Chem. by KU Knowlton (1993) -
Sugden, P. H. Signaling in myocardial hypertrophy: life after calcineurin? Circ. Res. 84, 633–646 (1999).
(
10.1161/01.RES.84.6.633
) / Circ. Res. by PH Sugden (1999) -
D'Angelo, D. D. et al. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc. Natl Acad. Sci. USA 94, 8121–8126 (1997).
(
10.1073/pnas.94.15.8121
) / Proc. Natl Acad. Sci. USA by DD D'Angelo (1997) -
Hein, L. et al. Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc. Natl Acad. Sci. USA 94, 6391–6396 (1997).
(
10.1073/pnas.94.12.6391
) / Proc. Natl Acad. Sci. USA by L Hein (1997) -
Choukroun, G. et al. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J. Clin. Invest. 104, 391–398 (1999).
(
10.1172/JCI6350
) / J. Clin. Invest. by G Choukroun (1999) -
Rockman, H. A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl Acad. Sci. USA 88, 8277–8281 (1991).
(
10.1073/pnas.88.18.8277
) / Proc. Natl Acad. Sci. USA by HA Rockman (1991) -
Akhter, S. A. et al. Targeting the receptor–Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280, 574–577 (1998).
(
10.1126/science.280.5363.574
) / Science by SA Akhter (1998) -
Grossman, W., Jones, D. & McLaurin, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56–64 (1975).
(
10.1172/JCI108079
) / J. Clin. Invest. by W Grossman (1975) -
Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N. Engl. J. Med. 322, 1561–1566 (1990).
(
10.1056/NEJM199005313222203
) / N. Engl. J. Med. by D Levy (1990) -
Esposito, G. et al. Genetic alterations that inhibit in vivo pressure overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105, 85–92 (2002).
(
10.1161/hc0102.101365
) / Circulation by G Esposito (2002) -
Leimbach, W. N. Jr et al. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73, 913–919 (1986).
(
10.1161/01.CIR.73.5.913
) / Circulation by WN Leimbach Jr (1986) -
Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).
(
10.1056/NEJM198409273111303
) / N. Engl. J. Med. by JN Cohn (1984) -
Bristow, M. R. Why does the myocardium fail? Insights from basic science. Lancet 352 (Suppl. I), 8–14 (1998).
(
10.1016/S0140-6736(98)90311-7
) / Lancet by MR Bristow (1998) -
Packer, M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20, 248–254 (1992).
(
10.1016/0735-1097(92)90167-L
) / J. Am. Coll. Cardiol. by M Packer (1992) -
Ungerer, M. et al. Expression of β-ARrestins and β-adrenergic receptor kinases in the failing human heart. Circ. Res. 74, 206–213 (1994).
(
10.1161/01.RES.74.2.206
) / Circ. Res. by M Ungerer (1994) -
Feldman, A. M. et al. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J. Clin. Invest. 82, 189–197 (1988).
(
10.1172/JCI113569
) / J. Clin. Invest. by AM Feldman (1988) -
Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).
(
10.1038/36362
) / Nature by Y Daaka (1997) -
Zhu, W. Z. et al. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl Acad. Sci. USA 98, 1607–1612 (2001).
(
10.1073/pnas.98.4.1607
) / Proc. Natl Acad. Sci. USA by WZ Zhu (2001) -
Green, S. A., Cole, G., Jacinto, M., Innis, M. & Liggett, S. B. A polymorphism of the human β2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J. Biol. Chem. 268, 23116–23121 (1993).
(
10.1016/S0021-9258(19)49434-9
) / J. Biol. Chem. by SA Green (1993) -
Podlowski, S. et al. β1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? J. Mol. Med. 78, 87–93 (2000).
(
10.1007/s001090000080
) / J. Mol. Med. by S Podlowski (2000) -
Liggett, S. B. et al. The Ile164 β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J. Clin. Invest. 102, 1534–1539 (1998).
(
10.1172/JCI4059
) / J. Clin. Invest. by SB Liggett (1998) -
Wagoner, L. E. et al. Polymorphisms of the β2-adrenergic receptor determine exercise capacity in patients with heart failure. Circ. Res. 86, 834–840 (2000).
(
10.1161/01.RES.86.8.834
) / Circ. Res. by LE Wagoner (2000) -
Collins, F. S. Shattuck lecture—medical and societal consequences of the human genome project. N. Engl. J. Med. 341, 28–37 (1999).
(
10.1056/NEJM199907013410106
) / N. Engl. J. Med. by FS Collins (1999) -
Epstein, S. E. & Braunwald, E. The effect of β-adrenergic blockade on patterns of urinary sodium excretion. Studies in normal subjects and in patients with heart disease. Ann. Intern. Med. 65, 20–27 (1966).
(
10.7326/0003-4819-65-1-20
) / Ann. Intern. Med. by SE Epstein (1966) -
The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999).
(
10.1016/S0140-6736(98)11181-9
) -
Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 353, 2001–2007 (1999).
(
10.1016/S0140-6736(99)04440-2
) -
Packer, M. et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N. Engl. J. Med. 334, 1349–1355 (1996).
(
10.1056/NEJM199605233342101
) / N. Engl. J. Med. by M Packer (1996) -
Packer, M. et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001).
(
10.1056/NEJM200105313442201
) / N. Engl. J. Med. by M Packer (2001) -
Australia/New Zealand Heart Failure Research Collaborative Group. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Lancet 349, 375–380 (1997).
(
10.1016/S0140-6736(97)80008-6
) -
Esposito, G. et al. Cellular and functional defects in a mouse model of heart failure. Am. J. Physiol. Heart Circ. Physiol. 279, H3101–H3112 (2000).
(
10.1152/ajpheart.2000.279.6.H3101
) / Am. J. Physiol. Heart Circ. Physiol. by G Esposito (2000) -
Koch, W. J., Lefkowitz, R. J. & Rockman, H. A. Functional consequences of altering myocardial adrenergic receptor signaling. Annu. Rev. Physiol. 62, 237–260 (2000).
(
10.1146/annurev.physiol.62.1.237
) / Annu. Rev. Physiol. by WJ Koch (2000) -
Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA 96, 7059–7064 (1999).
(
10.1073/pnas.96.12.7059
) / Proc. Natl Acad. Sci. USA by S Engelhardt (1999) -
Milano, C. A. et al. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 264, 582–586 (1994).
(
10.1126/science.8160017
) / Science by CA Milano (1994) -
Liggett, S. B. et al. Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101, 1707–1714 (2000).
(
10.1161/01.CIR.101.14.1707
) / Circulation by SB Liggett (2000) -
Rohrer, D. K. Physiological consequences of β-adrenergic receptor disruption. J. Mol. Med. 76, 764–772 (1998).
(
10.1007/s001090050278
) / J. Mol. Med. by DK Rohrer (1998) -
Chruscinski, A. J. et al. Targeted disruption of the β2 adrenergic receptor gene. J. Biol. Chem. 274, 16694–16700 (1999).
(
10.1074/jbc.274.24.16694
) / J. Biol. Chem. by AJ Chruscinski (1999) -
Communal, C., Singh, K., Sawyer, D. B. & Colucci, W. S. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100, 2210–2212 (1999).
(
10.1161/01.CIR.100.22.2210
) / Circulation by C Communal (1999) -
Dorn, G. W. II Tepe, N. M., Lorenz, J. N., Koch, W. J. & Liggett, S. B. Low- and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαq-overexpressing mice. Proc. Natl Acad. Sci. USA 96, 6400–6405 (1999).
(
10.1073/pnas.96.11.6400
) / Proc. Natl Acad. Sci. USA by GW Dorn II (1999) -
Rockman, H. A. et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA 95, 7000–7005 (1998).
(
10.1073/pnas.95.12.7000
) / Proc. Natl Acad. Sci. USA by HA Rockman (1998) -
Freeman, K. et al. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J. Clin. Invest. 107, 967–974 (2001).
(
10.1172/JCI12083
) / J. Clin. Invest. by K Freeman (2001) -
Akhter, S. A. et al. Restoration of β-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc. Natl Acad. Sci. USA 94, 12100–12105 (1997).
(
10.1073/pnas.94.22.12100
) / Proc. Natl Acad. Sci. USA by SA Akhter (1997) -
Maurice, J. P. et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary β2-adrenergic receptor gene delivery. J. Clin. Invest. 104, 21–29 (1999).
(
10.1172/JCI6026
) / J. Clin. Invest. by JP Maurice (1999) -
Shah, A. S. et al. Intracoronary adenovirus-mediated delivery and overexpression of the β2-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation 101, 408–414 (2000).
(
10.1161/01.CIR.101.4.408
) / Circulation by AS Shah (2000) -
Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999).
(
10.1016/S0092-8674(00)81662-1
) / Cell by S Minamisawa (1999) -
Roth, D. M. et al. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99, 3099–3102 (1999).
(
10.1161/01.CIR.99.24.3099
) / Circulation by DM Roth (1999) -
Koch, W. J. et al. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a β-ARK inhibitor. Science 268, 1350–1353 (1995).
(
10.1126/science.7761854
) / Science by WJ Koch (1995) -
Jaber, M. et al. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc. Natl Acad. Sci. USA 93, 12974–12979 (1996).
(
10.1073/pnas.93.23.12974
) / Proc. Natl Acad. Sci. USA by M Jaber (1996) -
Rockman, H. A. et al. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc. Natl Acad. Sci. USA 93, 9954–9959 (1996).
(
10.1073/pnas.93.18.9954
) / Proc. Natl Acad. Sci. USA by HA Rockman (1996) -
Rockman, H. A. et al. Control of myocardial contractile function by the level of β-adrenergic receptor kinase 1 in gene-targeted mice. J. Biol. Chem. 273, 18180–18184 (1998).
(
10.1074/jbc.273.29.18180
) / J. Biol. Chem. by HA Rockman (1998) -
Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).
(
10.1016/S0092-8674(00)81878-4
) / Cell by S Arber (1997) -
Cho, M. C. et al. Defective β-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. J. Biol. Chem. 274, 22251–22256 (1999).
(
10.1074/jbc.274.32.22251
) / J. Biol. Chem. by MC Cho (1999) -
Freeman, K. et al. Progression from hypertrophic to dilated cardiomyopathy in mice that express a mutant myosin transgene. Am. J. Physiol. Heart Circ. Physiol. 280, H151–H159 (2001).
(
10.1152/ajpheart.2001.280.1.H151
) / Am. J. Physiol. Heart Circ. Physiol. by K Freeman (2001) -
Harding, V. B., Jones, L. R., Lefkowitz, R. J., Koch, W. J. & Rockman, H. A. Cardiac β ARK1 inhibition prolongs survival and augments β-blocker therapy in a mouse model of severe heart failure. Proc. Natl Acad. Sci. USA 98, 5809–5814 (2001).
(
10.1073/pnas.091102398
) / Proc. Natl Acad. Sci. USA by VB Harding (2001) -
White, D. C. et al. Preservation of myocardial β-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl Acad. Sci. USA 97, 5428–5433 (2000).
(
10.1073/pnas.090091197
) / Proc. Natl Acad. Sci. USA by DC White (2000) -
Shah, A. S. et al. In vivo ventricular gene delivery of a β-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103, 1311–1316 (2001).
(
10.1161/01.CIR.103.9.1311
) / Circulation by AS Shah (2001) -
Naga Prasad, S. V., Barak, L. S., Rapacciuolo, A., Caron, M. G. & Rockman, H. A. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by β-adrenergic receptor Kinase 1. A role in receptor sequestration. J. Biol. Chem. 276, 18953–18959 (2001).
(
10.1074/jbc.M102376200
) / J. Biol. Chem. by SV Naga Prasad (2001) -
The Xamoterol in Severe Heart Failure Study Group. Xamoterol in severe heart failure. Lancet 336, 1–6 (1990).
(
10.1016/0140-6736(90)91517-E
) -
Iaccarino, G., Tomhave, E. D., Lefkowitz, R. J. & Koch, W. J. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation 98, 1783–1789 (1998).
(
10.1161/01.CIR.98.17.1783
) / Circulation by G Iaccarino (1998) -
McNamara, D. M. et al. Pharmacogenetic interactions between β-blocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Circulation 103, 1644–1648 (2001).7
(
10.1161/01.CIR.103.12.1644
) / Circulation by DM McNamara (2001)
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 26, 2002, 4:30 a.m.) |
Deposited | 2 years, 3 months ago (May 17, 2023, 8:23 p.m.) |
Indexed | 1 week, 6 days ago (Aug. 19, 2025, 7:09 a.m.) |
Issued | 23 years, 8 months ago (Jan. 1, 2002) |
Published | 23 years, 8 months ago (Jan. 1, 2002) |
Published Print | 23 years, 8 months ago (Jan. 1, 2002) |
@article{Rockman_2002, title={Seven-transmembrane-spanning receptors and heart function}, volume={415}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/415206a}, DOI={10.1038/415206a}, number={6868}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Rockman, Howard A. and Koch, Walter J. and Lefkowitz, Robert J.}, year={2002}, month=jan, pages={206–212} }