Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Heldin, C.-H., Miyazono, K., & ten Dijke, P. (1997). TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature, 390(6659), 465–471.

Authors 3
  1. Carl-Henrik Heldin (first)
  2. Kohei Miyazono (additional)
  3. Peter ten Dijke (additional)
References 101 Referenced 3,032
  1. Massagué, J., Hata, A. & Liu, F. TGF- β signalling through the Smad pathway. Trends Cell Biol. 7, 187 –192 (1997). (10.1016/S0962-8924(97)01036-2) / Trends Cell Biol. by J Massagué (1997)
  2. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. Mechanism of activation of the TGF- β receptor. Nature 370, 341 –347 (1994). (10.1038/370341a0) / Nature by JL Wrana (1994)
  3. Henis, Y. I., Moustakas, A., Lin, H. Y. & Lodish, H. F. The types II and III transforming growth factor- β receptors form homo-oligomers. J. Cell Biol. 126, 139 –154 (1994). (10.1083/jcb.126.1.139) / J. Cell Biol. by YI Henis (1994)
  4. Chen, R.-H. & Derynck, R. Homomeric interactions between type II transforming growth factor- β receptors. J. Biol. Chem. 269, 22868 –22874 (1994). (10.1016/S0021-9258(17)31725-8) / J. Biol. Chem. by R-H Chen (1994)
  5. Lu, K. X. & Lodish, H. F. Signalling by chimeric erythropoietin-TGF- β receptors: Homodimerization of the cytoplasmic domain of the type I TGF- β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 15, 4485 –4496 (1996). (10.1002/j.1460-2075.1996.tb00826.x) / EMBO J. by KX Lu (1996)
  6. Feng, X.-H. & Derynck, R. Ligand-independent activation of transforming growth factor (TGF) β signaling pathways by heteromeric cytoplasmic domains of TGF- β receptors. J. Biol. Chem. 271, 13123 –13129 (1996). (10.1074/jbc.271.22.13123) / J. Biol. Chem. by X-H Feng (1996)
  7. Wieser, R., Wrana, J. L. & Massagué, J. GS domain mutations that constitutively activate T βR-I, the downstream signaling component in the TGF- β receptor complex. EMBO J. 14, 2199 –2208 (1995). (10.1002/j.1460-2075.1995.tb07214.x) / EMBO J. by R Wieser (1995)
  8. Attisano, L., Wrana, J. L., Montalvo, E. & Massagué, J. Activation of signalling by the activin receptor complex. Mol. Cell. Biol. 16, 1066 –1073 (1996). (10.1128/MCB.16.3.1066) / Mol. Cell. Biol. by L Attisano (1996)
  9. Willis, S. A., Zimmerman, C. M., Li, L. & Mathews, L. S. Formation and activation by phosphorylation of activin receptor complexes. Mol. Endocrinol. 10, 367 –379 (1996). / Mol. Endocrinol. by SA Willis (1996)
  10. Rodriguez, C., Chen, F., Weinberg, R. A. & Lodish, H. F. Cooperative binding of transforming growth factor (TGF)- β2 to the types I and II TGF- β receptors. J. Biol. Chem. 270, 15919 –15922 (1995). (10.1074/jbc.270.27.15919) / J. Biol. Chem. by C Rodriguez (1995)
  11. Liu, F., Ventura, F., Doody, J. & Massagué, J. Human type II receptor for bone morphogenic proteins (BMPs): Extension of the two-kinase receptor model to the BMPs. Mol. Cell. Biol. 15, 3479 –3486 (1995). (10.1128/MCB.15.7.3479) / Mol. Cell. Biol. by F Liu (1995)
  12. Nohno, T. et al. Identification of a human type Ii receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J. Biol. Chem. 270, 22522 –22526 (1995). (10.1074/jbc.270.38.22522) / J. Biol. Chem. by T Nohno (1995)
  13. Rosenzweig, B. L. et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc. Natl Acad. Sci. USA 92, 7632 –7636 (1995). (10.1073/pnas.92.17.7632) / Proc. Natl Acad. Sci. USA by BL Rosenzweig (1995)
  14. Yamashita, H., ten Dijke, P., Franzén, P., Miyazono, K. & Heldin, C.-H. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor- β. J. Biol. Chem. 269, 20172 –20178 (1994). (10.1016/S0021-9258(17)32142-7) / J. Biol. Chem. by H Yamashita (1994)
  15. Weis-Garcia, F. & Massagué, J. Complementation between kinase-defective and activation-defective TGF- β receptors reveals a novel form of receptor cooperativity essential for signaling. EMBO J. 15, 276 –289 (1996). (10.1002/j.1460-2075.1996.tb00358.x) / EMBO J. by F Weis-Garcia (1996)
  16. C árcamo, J. et al. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol. Cell. Biol. 14, 3810 –3821 (1994). (10.1128/MCB.14.6.3810) / Mol. Cell. Biol. by J C árcamo (1994)
  17. Feng, X.-H. & Derynck, R. Akinase subdomain of transforming growth factor- β (TGF- β) type I receptor determines the TGF- β intracellular signaling specificity. EMBO J. 16, 3912 –3923 (1997). (10.1093/emboj/16.13.3912) / EMBO J. by X-H Feng (1997)
  18. McCaffrey, T. A. et al. Decreased type II/type I TGF- β receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF- β1. J. Clin. Invest. 96, 2667 –2675 (1995). (10.1172/JCI118333) / J. Clin. Invest. by TA McCaffrey (1995)
  19. Sankar, S. et al. Modulation of transforming growth factor β receptor levels on microvascular endothelial cells during in vitro angiogenesis. J. Clin. Invest. 97, 1436 –1446 (1996). (10.1172/JCI118565) / J. Clin. Invest. by S Sankar (1996)
  20. Chen, R. H., Ebner, R. & Derynck, R. Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF- β activities. Science 260, 1335 –1338 (1993). (10.1126/science.8388126) / Science by RH Chen (1993)
  21. Souchelnytskyi, S., ten Dijke, P., Miyazono, K. & Heldin, C.-H. Phosphorylation of Ser165 in TGF- β type I receptor modulates TGF- β1-induced cellular responses. EMBO J. 15, 6231 –6240 (1996). (10.1002/j.1460-2075.1996.tb01013.x) / EMBO J. by S Souchelnytskyi (1996)
  22. Luo, K. X. & Lodish, H. F. Positive and negative regulation of type II TGF β receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J. 16, 1970 –1981 (1997). (10.1093/emboj/16.8.1970) / EMBO J. by KX Luo (1997)
  23. Lawler, S. et al. The type II transforming growth factor- β receptor autophosphoryltes not only on serine and threonine but also on tyrosine residues. J. Biol. Chem. 272, 14850 –14859 (1997). (10.1074/jbc.272.23.14850) / J. Biol. Chem. by S Lawler (1997)
  24. Nakamura, T. et al. Isolation and characterization of activin receptor from mouse embryonal carcinoma cells: Identification of its serine/threonine/tyrosine protein kinase activity. J. Biol. Chem. 267, 18924 –18928 (1992). (10.1016/S0021-9258(19)37049-8) / J. Biol. Chem. by T Nakamura (1992)
  25. Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241 –254 (1995). (10.1093/genetics/139.1.241) / Genetics by LA Raftery (1995)
  26. Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347 –1358 (1995). (10.1093/genetics/139.3.1347) / Genetics by JJ Sekelsky (1995)
  27. Wiersdorff, V., Lecuit, T., Cohen, S. M. & Mlodzik, M. Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122, 2153 –2162 (1996). (10.1242/dev.122.7.2153) / Development by V Wiersdorff (1996)
  28. Newfeld, S. J., Chartoff, E. H., Graff, J. M., Melton, D. A. & Gelbart, W. M. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF- β responsiveness cells. Development 122, 2099 –2108 (1996). (10.1242/dev.122.7.2099) / Development by SJ Newfeld (1996)
  29. Hoodless, P. A. et al. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489 –500 (1996). (10.1016/S0092-8674(00)81250-7) / Cell by PA Hoodless (1996)
  30. Newfeld, S. J. et al. Mothers against dpp participates in a DPP/TGF- β responsive serine –threonine kinase signal transduction cascade. Development 124, 3167 –3176 (1997). (10.1242/dev.124.16.3167) / Development by SJ Newfeld (1997)
  31. Savage, C. et al. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components. Proc. Natl Acad. Sci. USA 93, 790 –794 (1996). (10.1073/pnas.93.2.790) / Proc. Natl Acad. Sci. USA by C Savage (1996)
  32. Graff, J. M., Bansal, A. & Melton, D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF β superfamily. Cell 85, 479 –487 (1996). (10.1016/S0092-8674(00)81249-0) / Cell by JM Graff (1996)
  33. Thomsen, G. H. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 122, 2359 –2366 (1996). (10.1242/dev.122.8.2359) / Development by GH Thomsen (1996)
  34. Liu, F. et al. Ahuman Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620 –623 (1996). (10.1038/381620a0) / Nature by F Liu (1996)
  35. Baker, J. C. & Harland, R. M. Anovel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev. 10, 1880 –1889 (1996). (10.1101/gad.10.15.1880) / Genes Dev. by JC Baker (1996)
  36. Eppert, K. et al. MADR2 maps to 18q21 and encodes a TGF β-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543 –552 (1996). (10.1016/S0092-8674(00)80128-2) / Cell by K Eppert (1996)
  37. Zhang, Y., Feng, X.-H., Wu, R.-Y. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGF- β response. Nature 383, 168 –172 (1996). (10.1038/383168a0) / Nature by Y Zhang (1996)
  38. Nakao, A. et al. TGF- β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353 –5362 (1997). (10.1093/emboj/16.17.5353) / EMBO J. by A Nakao (1997)
  39. Chen, Y., Lebrun, J. J. & Vale, W. Regulation of transforming growth factor β- and activin-induced transcription by mammalian Mad proteins. Proc. Natl Acad. Sci. USA 93, 12992 –12997 (1996). (10.1073/pnas.93.23.12992) / Proc. Natl Acad. Sci. USA by Y Chen (1996)
  40. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massagué, J. The TGF- β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984 –995 (1997). (10.1101/gad.11.8.984) / Genes Dev. by M Kretzschmar (1997)
  41. Suzuki, A., Chang, C., Yingling, J. M., Wang, X.-F. & Hemmati-Brivvanlous, A. Smad5 induces ventral fates in Xenopus embryo. Dev. Biol. 184, 402 –405 (1997). (10.1006/dbio.1997.8548) / Dev. Biol. by A Suzuki (1997)
  42. Watanabe, T. K. et al. Cloning and characterization of a novel member of the human Mad gene family. Genomics 42, 446 –451 (1997). (10.1006/geno.1997.4753) / Genomics by TK Watanabe (1997)
  43. Lechleider, R. J., de Caestecker, M. P., Dehejia, A., Polymeropoulos, M. H. & Roberts, A. B. Serine phosphorylation, chroosomal localization, and transforming growth factor- β signal transduction by human bsp-1. J. Biol. Chem. 271, 17617 –17620 (1996). (10.1074/jbc.271.30.17617) / J. Biol. Chem. by RJ Lechleider (1996)
  44. Yingling, J. M. et al. Mammalian dwarfins are phosphorylated in response to transforming growth factor β and are implicated in control of cell growth. Proc. Natl Acad. Sci. USA 93, 8940 –8944 (1996). (10.1073/pnas.93.17.8940) / Proc. Natl Acad. Sci. USA by JM Yingling (1996)
  45. Marc ías-Silva, M. et al. MADR2 is a substrate of the TGF β receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215 –1224 (1996). (10.1016/S0092-8674(00)81817-6) / Cell by M Marc ías-Silva (1996)
  46. Souchelnytskyi, S. et al. Phosphorylation of Ser465 and Ser467 in the C-terminus of Smad2 mediates interaction with Smad4 and is required for TGF- β signalling. J. Biol. Chem. 272, 28107 –28115 (1997). (10.1074/jbc.272.44.28107) / J. Biol. Chem. by S Souchelnytskyi (1997)
  47. Abdollah, S. et al. T βRI phosphorylation of Smad2 on Ser465 and 467 is required for Smad2/Smad4 complex formation and signalling. J. Biol. Chem. 272, 27678 –27685 (1997). (10.1074/jbc.272.44.27678) / J. Biol. Chem. by S Abdollah (1997)
  48. Lagna, G., Hata, A., Hammati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF- β signalling pathways. Nature 383, 832 –836 (1996). (10.1038/383832a0) / Nature by G Lagna (1996)
  49. Wu, R.-Y., Zhang, Y., Feng, X.-Y. & Derynck, R. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol. 17, 2521 –2528 (1997). (10.1128/MCB.17.5.2521) / Mol. Cell. Biol. by R-Y Wu (1997)
  50. Zhang, Y., Musci, T. & Derynck, R. The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr. Biol. 7, 270 –276 (1997). (10.1016/S0960-9822(06)00123-0) / Curr. Biol. by Y Zhang (1997)
  51. Padgett, R. W., Savage, C. & Das, P. Genetic and biochemical analysis of TGF β signal transduction. Cytokine Growth Factor Rev. 8, 1 –9 (1997). (10.1016/S1359-6101(96)00050-0) / Cytokine Growth Factor Rev. by RW Padgett (1997)
  52. de Caestecker, M. P. et al. Characterization of functional domains within smad4/DPC4. J. Biol. Chem. 272, 13690 –13696 (1997). (10.1074/jbc.272.21.13690) / J. Biol. Chem. by MP de Caestecker (1997)
  53. Meersseman, G. et al. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation. Mech. Dev. 61, 127 –140 (1997). (10.1016/S0925-4773(96)00629-6) / Mech. Dev. by G Meersseman (1997)
  54. Hata, A., Lo, R. S., Wotton, D., Lagna, G. & Massagué, J. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388, 82 –87 (1997). (10.1038/40424) / Nature by A Hata (1997)
  55. Schutte, M. et al. DPC4 gene in various tumour types. Cancer Res. 56, 2527 –2530 (1996). / Cancer Res. by M Schutte (1996)
  56. Kim, J., Johnson, K., Chen, H. J., Carroll, S. & Laughon, A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304 –308 (1997). (10.1038/40906) / Nature by J Kim (1997)
  57. Shi, Y., Hata, A., Lo, R. S., Massagué, J. & Pavletich, N. P. Astructural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87 –93 (1997). (10.1038/40431) / Nature by Y Shi (1997)
  58. Imamura, T. et al. Smad6 is an inhibitor in the TGF- β superfamily signalling. Nature 389, 622 –626 (1997). (10.1038/39355) / Nature by T Imamura (1997)
  59. Nakao, A. et al. Identification of Smad7, a TGF- β-inducible antagonist of TGF- β signalling. Nature 389, 631 –635 (1997). (10.1038/39369) / Nature by A Nakao (1997)
  60. Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGF β receptor and functions as an antagonist of TGF β signaling. Cell 89, 1165 –1173 (1997). (10.1016/S0092-8674(00)80303-7) / Cell by H Hayashi (1997)
  61. Topper, J. N. et al. Vascular MAD s: Two novel MAD -related genes selectively inducible by flow in human vascular endothelium. Proc. Natl Acad. Sci. USA 94, 9314 –9319 (1997). (10.1073/pnas.94.17.9314) / Proc. Natl Acad. Sci. USA by JN Topper (1997)
  62. Tsuneizumi, K. et al. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389, 627 –631 (1997). (10.1038/39362) / Nature by K Tsuneizumi (1997)
  63. Watabe, T. et al. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev. 9, 3038 –3050 (1995). (10.1101/gad.9.24.3038) / Genes Dev. by T Watabe (1995)
  64. Kaufmann, E. et al. Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of the early response gene XFD-1 ′ in Xenopus laevis embryos. EMBO J. 15, 6739 –6749 (1996). (10.1002/j.1460-2075.1996.tb01063.x) / EMBO J. by E Kaufmann (1996)
  65. Ladher, R., Mohun, T. J., Smith, J. C. & Snape, A. M. Xom : a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122, 2385 –2394 (1996). (10.1242/dev.122.8.2385) / Development by R Ladher (1996)
  66. Gawantka, V., Delius, H., Hirschfeld, K., Blumenstock, C. & Niehrs, C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14, 6268 –6279 (1995). (10.1002/j.1460-2075.1995.tb00317.x) / EMBO J. by V Gawantka (1995)
  67. Suzuki, A., Ueno, N. & Hemmati-Brivvanlou, A. Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037 –3044 (1997). (10.1242/dev.124.16.3037) / Development by A Suzuki (1997)
  68. Keeton, M. R., Curriden, S. A., van Zonneveld, A. J. & Loskutoff, D. J. Identification of regulatory sequences in the type I plasminogen activator inhibitor gene responsive to transforming growth factor β. J. Biol. Chem. 266, 23048 –23052 (1991). (10.1016/S0021-9258(18)54461-6) / J. Biol. Chem. by MR Keeton (1991)
  69. Kim, S. J. et al. Autoinduction of transforming growth factor β1 is mediated by the AP-1 complex. Mol. Cell. Biol. 10, 1492 –1497 (1990). (10.1128/MCB.10.4.1492) / Mol. Cell. Biol. by SJ Kim (1990)
  70. Datto, M. B., Yu, Y. & Wang, X.-F. Functional analysis of the transforming growth factor β responsive elements in the WAF1/Cip1/p21 promoter. J. Biol. Chem. 270, 28623 –28628 (1995). (10.1074/jbc.270.48.28623) / J. Biol. Chem. by MB Datto (1995)
  71. Li, J.-M., Nichols, M. A., Chandrasekharan, S., Xiong, Y. & Wang, X.-F. Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270, 26750 –26753 (1995). (10.1074/jbc.270.45.26750) / J. Biol. Chem. by J-M Li (1995)
  72. Chen, X., Rubock, M. J. & Whitman, M. Atranscriptional partner for MAD proteins in TGF- β signalling. Nature 383, 691 –696 (1996). (10.1038/383691a0) / Nature by X Chen (1996)
  73. Chen, X. et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 85 –89 (1997). (10.1038/38008) / Nature by X Chen (1997)
  74. Arora, K. et al. The Drosophila schnurri gene acts in the Dpp/TGF- β signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81, 781 –790 (1995). (10.1016/0092-8674(95)90539-1) / Cell by K Arora (1995)
  75. Grieder, N. C., Nellen, D., Burke, R., Basler, K. & Affolter, M. schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 81, 791 –800 (1995). (10.1016/0092-8674(95)90540-5) / Cell by NC Grieder (1995)
  76. Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivvanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177 –3184 (1997). (10.1242/dev.124.16.3177) / Development by PA Wilson (1997)
  77. Charng, M.-J., Kinnunen, P., Hawker, J., Brand, T. & Schneider, M. D. FKBP-12 recognition is dispensable for signal generation by type I transforming growth factor- β receptors. J. Biol. Chem. 271, 22941 –22944 (1996). (10.1074/jbc.271.38.22941) / J. Biol. Chem. by M-J Charng (1996)
  78. Wang, T. et al. The immunophilin FKBP12 functions as a common inhibitor of the TGF β family type I receptors. Cell 86, 435 –444 (1996). (10.1016/S0092-8674(00)80116-6) / Cell by T Wang (1996)
  79. Chen, Y. G., Liu, F. & Massagué, J. Mechanism of TGF β receptor inhibition by FKBP12. EMBO J. 16, 3866 –3876 (1997). (10.1093/emboj/16.13.3866) / EMBO J. by YG Chen (1997)
  80. Kawabata, M., Imamura, T., Miyazono, K., Engel, M. E. & Moses, H. L. Interaction of the transforming growth factor- β type I receptor with farnesyl-protein transferase- α. J. Biol. Chem. 270, 29628 –29631 (1995). (10.1074/jbc.270.10.5625) / J. Biol. Chem. by M Kawabata (1995)
  81. Ventura, F., Liu, F., Doody, J. & Massagué, J. Interaction of transforming growth factor- β receptor I with farnesyl-protein transferase- α in yeast and mammalian cells. J. Biol. Chem. 271, 13931 –13934 (1996). (10.1074/jbc.271.24.13931) / J. Biol. Chem. by F Ventura (1996)
  82. Wang, T. et al. The p21RAS farnesyltransferase α subunit in TGF- β and activin signaling. Science 271, 1120 –1122 (1996). (10.1126/science.271.5252.1120) / Science by T Wang (1996)
  83. Reddy, K. B., Karode, M. C., Harmony, J. A. K. & Howe, P. H. Interaction of transforming growth factor β receptors with apolipoprotein J/clusterin. Biochemistry 35, 309 –314 (1996). (10.1021/bi951880a) / Biochemistry by KB Reddy (1996)
  84. Chen, R.-H., Miettinen, P. J., Maruoka, E. M., Choy, L. & Derynck, R. AWD-domain protein that is associated with and phosphorylated by the type II TGF- β receptor. Nature 377, 548 –552 (1995). (10.1038/377548a0) / Nature by R-H Chen (1995)
  85. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF- β signal transduction. Science 270, 2008 –2011 (1995). (10.1126/science.270.5244.2008) / Science by K Yamaguchi (1995)
  86. Hartsough, M. T. et al. Altered transforming growth factor β signaling in epithelial cells when Ras activation is blocked. J. Biol. Chem. 271, 22368 –22375 (1996). (10.1074/jbc.271.37.22368) / J. Biol. Chem. by MT Hartsough (1996)
  87. Mucsi, I., Skorecki, K. L. & Goldberg, H. J. Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor- β1 on gene expression. J. Biol. Chem. 271, 16567 –16572 (1996). (10.1074/jbc.271.28.16567) / J. Biol. Chem. by I Mucsi (1996)
  88. Atfi, A., Djelloul, S., Chastre, E., Davis, R. R. & Gespach, C. Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor beta-mediated signaling. J. Biol. Chem. 272, 1429 –1432 (1997). (10.1074/jbc.272.3.1429) / J. Biol. Chem. by A Atfi (1997)
  89. Frey, R. S. & Mulder, K. M. Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase Jun N-terminal kinase activation by transforming growth factor β in the negative growth control of breast cancer cells. Cancer Res. 57, 628 –633 (1997). / Cancer Res. by RS Frey (1997)
  90. Cui, W. et al. TGF β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531 –542 (1996). (10.1016/S0092-8674(00)80127-0) / Cell by W Cui (1996)
  91. Markowitz, S. D. & Roberts, A. B. Tumor suppressor activity of the TGF- β pathway in human cancers. Cytokine & Growth Factor Rev. 7, 93 –102 (1996). (10.1016/1359-6101(96)00001-9) / Cytokine & Growth Factor Rev. by SD Markowitz (1996)
  92. Markowitz, S. et al. Inactivation of the type II TGF- β receptor in colon cancer cells with microsatellite instability. Science 268, 1336 –1338 (1995). (10.1126/science.7761852) / Science by S Markowitz (1995)
  93. Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350 –353 (1996). (10.1126/science.271.5247.350) / Science by SA Hahn (1996)
  94. Riggins, G. J. et al. Mad -related genes in the human. Nature Genet. 13, 347 –349 (1996). (10.1038/ng0796-347) / Nature Genet. by GJ Riggins (1996)
  95. Riggins, R. G., Kinzler, K. W., Vogelstein, B. & Thiagalingamm, S. Frequency of Smad gene mutations in human cancers. Cancer Res. 57, 2578 –2580 (1997). / Cancer Res. by RG Riggins (1997)
  96. Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF- β-induced cell-cycle arrest. Nature 371, 257 –261 (1994). (10.1038/371257a0) / Nature by GJ Hannon (1994)
  97. Iavarone, A. & Massagué, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF- β in cells lacking the CDK inhibitor p15. Nature 387, 417 –422 (1997). (10.1038/387417a0) / Nature by A Iavarone (1997)
  98. Galaktionov, K., Chen, X. & Beach, D. Cdc25 cell-cycle phosphatase as a target of c-Myc. Nature 382, 511 –517 (1996). (10.1038/382511a0) / Nature by K Galaktionov (1996)
  99. Pietenpol, J. A. et al. TGF- β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61, 777 –785 (1990). (10.1016/0092-8674(90)90188-K) / Cell by JA Pietenpol (1990)
  100. Ihle, J. N. STATs: Signal transducers and activators of transcription. Cell 84, 331 –334 (1996). (10.1016/S0092-8674(00)81277-5) / Cell by JN Ihle (1996)
  101. Kretzschmar, M., Doody, J. & Massagué, J. Opposing BMP and EGF signalling pathways converge on the TGF- β family mediator Smad1. Nature 389, 618 –622 (1997). (10.1038/39348) / Nature by M Kretzschmar (1997)
Dates
Type When
Created 23 years ago (July 26, 2002, 4:37 a.m.)
Deposited 2 years, 3 months ago (May 16, 2023, 10:38 p.m.)
Indexed 2 hours, 29 minutes ago (Aug. 24, 2025, 4:50 a.m.)
Issued 27 years, 8 months ago (Dec. 1, 1997)
Published 27 years, 8 months ago (Dec. 1, 1997)
Published Print 27 years, 8 months ago (Dec. 1, 1997)
Funders 0

None

@article{Heldin_1997, title={TGF-β signalling from cell membrane to nucleus through SMAD proteins}, volume={390}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/37284}, DOI={10.1038/37284}, number={6659}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Heldin, Carl-Henrik and Miyazono, Kohei and ten Dijke, Peter}, year={1997}, month=dec, pages={465–471} }