Crossref
journal-article
Springer Science and Business Media LLC
Nature (297)
References
101
Referenced
3,032
-
Massagué, J., Hata, A. & Liu, F. TGF- β signalling through the Smad pathway. Trends Cell Biol. 7, 187 –192 (1997).
(
10.1016/S0962-8924(97)01036-2
) / Trends Cell Biol. by J Massagué (1997) -
Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. Mechanism of activation of the TGF- β receptor. Nature 370, 341 –347 (1994).
(
10.1038/370341a0
) / Nature by JL Wrana (1994) -
Henis, Y. I., Moustakas, A., Lin, H. Y. & Lodish, H. F. The types II and III transforming growth factor- β receptors form homo-oligomers. J. Cell Biol. 126, 139 –154 (1994).
(
10.1083/jcb.126.1.139
) / J. Cell Biol. by YI Henis (1994) -
Chen, R.-H. & Derynck, R. Homomeric interactions between type II transforming growth factor- β receptors. J. Biol. Chem. 269, 22868 –22874 (1994).
(
10.1016/S0021-9258(17)31725-8
) / J. Biol. Chem. by R-H Chen (1994) -
Lu, K. X. & Lodish, H. F. Signalling by chimeric erythropoietin-TGF- β receptors: Homodimerization of the cytoplasmic domain of the type I TGF- β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 15, 4485 –4496 (1996).
(
10.1002/j.1460-2075.1996.tb00826.x
) / EMBO J. by KX Lu (1996) -
Feng, X.-H. & Derynck, R. Ligand-independent activation of transforming growth factor (TGF) β signaling pathways by heteromeric cytoplasmic domains of TGF- β receptors. J. Biol. Chem. 271, 13123 –13129 (1996).
(
10.1074/jbc.271.22.13123
) / J. Biol. Chem. by X-H Feng (1996) -
Wieser, R., Wrana, J. L. & Massagué, J. GS domain mutations that constitutively activate T βR-I, the downstream signaling component in the TGF- β receptor complex. EMBO J. 14, 2199 –2208 (1995).
(
10.1002/j.1460-2075.1995.tb07214.x
) / EMBO J. by R Wieser (1995) -
Attisano, L., Wrana, J. L., Montalvo, E. & Massagué, J. Activation of signalling by the activin receptor complex. Mol. Cell. Biol. 16, 1066 –1073 (1996).
(
10.1128/MCB.16.3.1066
) / Mol. Cell. Biol. by L Attisano (1996) - Willis, S. A., Zimmerman, C. M., Li, L. & Mathews, L. S. Formation and activation by phosphorylation of activin receptor complexes. Mol. Endocrinol. 10, 367 –379 (1996). / Mol. Endocrinol. by SA Willis (1996)
-
Rodriguez, C., Chen, F., Weinberg, R. A. & Lodish, H. F. Cooperative binding of transforming growth factor (TGF)- β2 to the types I and II TGF- β receptors. J. Biol. Chem. 270, 15919 –15922 (1995).
(
10.1074/jbc.270.27.15919
) / J. Biol. Chem. by C Rodriguez (1995) -
Liu, F., Ventura, F., Doody, J. & Massagué, J. Human type II receptor for bone morphogenic proteins (BMPs): Extension of the two-kinase receptor model to the BMPs. Mol. Cell. Biol. 15, 3479 –3486 (1995).
(
10.1128/MCB.15.7.3479
) / Mol. Cell. Biol. by F Liu (1995) -
Nohno, T. et al. Identification of a human type Ii receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J. Biol. Chem. 270, 22522 –22526 (1995).
(
10.1074/jbc.270.38.22522
) / J. Biol. Chem. by T Nohno (1995) -
Rosenzweig, B. L. et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc. Natl Acad. Sci. USA 92, 7632 –7636 (1995).
(
10.1073/pnas.92.17.7632
) / Proc. Natl Acad. Sci. USA by BL Rosenzweig (1995) -
Yamashita, H., ten Dijke, P., Franzén, P., Miyazono, K. & Heldin, C.-H. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor- β. J. Biol. Chem. 269, 20172 –20178 (1994).
(
10.1016/S0021-9258(17)32142-7
) / J. Biol. Chem. by H Yamashita (1994) -
Weis-Garcia, F. & Massagué, J. Complementation between kinase-defective and activation-defective TGF- β receptors reveals a novel form of receptor cooperativity essential for signaling. EMBO J. 15, 276 –289 (1996).
(
10.1002/j.1460-2075.1996.tb00358.x
) / EMBO J. by F Weis-Garcia (1996) -
C árcamo, J. et al. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol. Cell. Biol. 14, 3810 –3821 (1994).
(
10.1128/MCB.14.6.3810
) / Mol. Cell. Biol. by J C árcamo (1994) -
Feng, X.-H. & Derynck, R. Akinase subdomain of transforming growth factor- β (TGF- β) type I receptor determines the TGF- β intracellular signaling specificity. EMBO J. 16, 3912 –3923 (1997).
(
10.1093/emboj/16.13.3912
) / EMBO J. by X-H Feng (1997) -
McCaffrey, T. A. et al. Decreased type II/type I TGF- β receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF- β1. J. Clin. Invest. 96, 2667 –2675 (1995).
(
10.1172/JCI118333
) / J. Clin. Invest. by TA McCaffrey (1995) -
Sankar, S. et al. Modulation of transforming growth factor β receptor levels on microvascular endothelial cells during in vitro angiogenesis. J. Clin. Invest. 97, 1436 –1446 (1996).
(
10.1172/JCI118565
) / J. Clin. Invest. by S Sankar (1996) -
Chen, R. H., Ebner, R. & Derynck, R. Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF- β activities. Science 260, 1335 –1338 (1993).
(
10.1126/science.8388126
) / Science by RH Chen (1993) -
Souchelnytskyi, S., ten Dijke, P., Miyazono, K. & Heldin, C.-H. Phosphorylation of Ser165 in TGF- β type I receptor modulates TGF- β1-induced cellular responses. EMBO J. 15, 6231 –6240 (1996).
(
10.1002/j.1460-2075.1996.tb01013.x
) / EMBO J. by S Souchelnytskyi (1996) -
Luo, K. X. & Lodish, H. F. Positive and negative regulation of type II TGF β receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J. 16, 1970 –1981 (1997).
(
10.1093/emboj/16.8.1970
) / EMBO J. by KX Luo (1997) -
Lawler, S. et al. The type II transforming growth factor- β receptor autophosphoryltes not only on serine and threonine but also on tyrosine residues. J. Biol. Chem. 272, 14850 –14859 (1997).
(
10.1074/jbc.272.23.14850
) / J. Biol. Chem. by S Lawler (1997) -
Nakamura, T. et al. Isolation and characterization of activin receptor from mouse embryonal carcinoma cells: Identification of its serine/threonine/tyrosine protein kinase activity. J. Biol. Chem. 267, 18924 –18928 (1992).
(
10.1016/S0021-9258(19)37049-8
) / J. Biol. Chem. by T Nakamura (1992) -
Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241 –254 (1995).
(
10.1093/genetics/139.1.241
) / Genetics by LA Raftery (1995) -
Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347 –1358 (1995).
(
10.1093/genetics/139.3.1347
) / Genetics by JJ Sekelsky (1995) -
Wiersdorff, V., Lecuit, T., Cohen, S. M. & Mlodzik, M. Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122, 2153 –2162 (1996).
(
10.1242/dev.122.7.2153
) / Development by V Wiersdorff (1996) -
Newfeld, S. J., Chartoff, E. H., Graff, J. M., Melton, D. A. & Gelbart, W. M. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF- β responsiveness cells. Development 122, 2099 –2108 (1996).
(
10.1242/dev.122.7.2099
) / Development by SJ Newfeld (1996) -
Hoodless, P. A. et al. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489 –500 (1996).
(
10.1016/S0092-8674(00)81250-7
) / Cell by PA Hoodless (1996) -
Newfeld, S. J. et al. Mothers against dpp participates in a DPP/TGF- β responsive serine –threonine kinase signal transduction cascade. Development 124, 3167 –3176 (1997).
(
10.1242/dev.124.16.3167
) / Development by SJ Newfeld (1997) -
Savage, C. et al. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components. Proc. Natl Acad. Sci. USA 93, 790 –794 (1996).
(
10.1073/pnas.93.2.790
) / Proc. Natl Acad. Sci. USA by C Savage (1996) -
Graff, J. M., Bansal, A. & Melton, D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF β superfamily. Cell 85, 479 –487 (1996).
(
10.1016/S0092-8674(00)81249-0
) / Cell by JM Graff (1996) -
Thomsen, G. H. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 122, 2359 –2366 (1996).
(
10.1242/dev.122.8.2359
) / Development by GH Thomsen (1996) -
Liu, F. et al. Ahuman Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620 –623 (1996).
(
10.1038/381620a0
) / Nature by F Liu (1996) -
Baker, J. C. & Harland, R. M. Anovel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev. 10, 1880 –1889 (1996).
(
10.1101/gad.10.15.1880
) / Genes Dev. by JC Baker (1996) -
Eppert, K. et al. MADR2 maps to 18q21 and encodes a TGF β-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543 –552 (1996).
(
10.1016/S0092-8674(00)80128-2
) / Cell by K Eppert (1996) -
Zhang, Y., Feng, X.-H., Wu, R.-Y. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGF- β response. Nature 383, 168 –172 (1996).
(
10.1038/383168a0
) / Nature by Y Zhang (1996) -
Nakao, A. et al. TGF- β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353 –5362 (1997).
(
10.1093/emboj/16.17.5353
) / EMBO J. by A Nakao (1997) -
Chen, Y., Lebrun, J. J. & Vale, W. Regulation of transforming growth factor β- and activin-induced transcription by mammalian Mad proteins. Proc. Natl Acad. Sci. USA 93, 12992 –12997 (1996).
(
10.1073/pnas.93.23.12992
) / Proc. Natl Acad. Sci. USA by Y Chen (1996) -
Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massagué, J. The TGF- β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984 –995 (1997).
(
10.1101/gad.11.8.984
) / Genes Dev. by M Kretzschmar (1997) -
Suzuki, A., Chang, C., Yingling, J. M., Wang, X.-F. & Hemmati-Brivvanlous, A. Smad5 induces ventral fates in Xenopus embryo. Dev. Biol. 184, 402 –405 (1997).
(
10.1006/dbio.1997.8548
) / Dev. Biol. by A Suzuki (1997) -
Watanabe, T. K. et al. Cloning and characterization of a novel member of the human Mad gene family. Genomics 42, 446 –451 (1997).
(
10.1006/geno.1997.4753
) / Genomics by TK Watanabe (1997) -
Lechleider, R. J., de Caestecker, M. P., Dehejia, A., Polymeropoulos, M. H. & Roberts, A. B. Serine phosphorylation, chroosomal localization, and transforming growth factor- β signal transduction by human bsp-1. J. Biol. Chem. 271, 17617 –17620 (1996).
(
10.1074/jbc.271.30.17617
) / J. Biol. Chem. by RJ Lechleider (1996) -
Yingling, J. M. et al. Mammalian dwarfins are phosphorylated in response to transforming growth factor β and are implicated in control of cell growth. Proc. Natl Acad. Sci. USA 93, 8940 –8944 (1996).
(
10.1073/pnas.93.17.8940
) / Proc. Natl Acad. Sci. USA by JM Yingling (1996) -
Marc ías-Silva, M. et al. MADR2 is a substrate of the TGF β receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215 –1224 (1996).
(
10.1016/S0092-8674(00)81817-6
) / Cell by M Marc ías-Silva (1996) -
Souchelnytskyi, S. et al. Phosphorylation of Ser465 and Ser467 in the C-terminus of Smad2 mediates interaction with Smad4 and is required for TGF- β signalling. J. Biol. Chem. 272, 28107 –28115 (1997).
(
10.1074/jbc.272.44.28107
) / J. Biol. Chem. by S Souchelnytskyi (1997) -
Abdollah, S. et al. T βRI phosphorylation of Smad2 on Ser465 and 467 is required for Smad2/Smad4 complex formation and signalling. J. Biol. Chem. 272, 27678 –27685 (1997).
(
10.1074/jbc.272.44.27678
) / J. Biol. Chem. by S Abdollah (1997) -
Lagna, G., Hata, A., Hammati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF- β signalling pathways. Nature 383, 832 –836 (1996).
(
10.1038/383832a0
) / Nature by G Lagna (1996) -
Wu, R.-Y., Zhang, Y., Feng, X.-Y. & Derynck, R. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol. 17, 2521 –2528 (1997).
(
10.1128/MCB.17.5.2521
) / Mol. Cell. Biol. by R-Y Wu (1997) -
Zhang, Y., Musci, T. & Derynck, R. The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr. Biol. 7, 270 –276 (1997).
(
10.1016/S0960-9822(06)00123-0
) / Curr. Biol. by Y Zhang (1997) -
Padgett, R. W., Savage, C. & Das, P. Genetic and biochemical analysis of TGF β signal transduction. Cytokine Growth Factor Rev. 8, 1 –9 (1997).
(
10.1016/S1359-6101(96)00050-0
) / Cytokine Growth Factor Rev. by RW Padgett (1997) -
de Caestecker, M. P. et al. Characterization of functional domains within smad4/DPC4. J. Biol. Chem. 272, 13690 –13696 (1997).
(
10.1074/jbc.272.21.13690
) / J. Biol. Chem. by MP de Caestecker (1997) -
Meersseman, G. et al. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation. Mech. Dev. 61, 127 –140 (1997).
(
10.1016/S0925-4773(96)00629-6
) / Mech. Dev. by G Meersseman (1997) -
Hata, A., Lo, R. S., Wotton, D., Lagna, G. & Massagué, J. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388, 82 –87 (1997).
(
10.1038/40424
) / Nature by A Hata (1997) - Schutte, M. et al. DPC4 gene in various tumour types. Cancer Res. 56, 2527 –2530 (1996). / Cancer Res. by M Schutte (1996)
-
Kim, J., Johnson, K., Chen, H. J., Carroll, S. & Laughon, A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304 –308 (1997).
(
10.1038/40906
) / Nature by J Kim (1997) -
Shi, Y., Hata, A., Lo, R. S., Massagué, J. & Pavletich, N. P. Astructural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87 –93 (1997).
(
10.1038/40431
) / Nature by Y Shi (1997) -
Imamura, T. et al. Smad6 is an inhibitor in the TGF- β superfamily signalling. Nature 389, 622 –626 (1997).
(
10.1038/39355
) / Nature by T Imamura (1997) -
Nakao, A. et al. Identification of Smad7, a TGF- β-inducible antagonist of TGF- β signalling. Nature 389, 631 –635 (1997).
(
10.1038/39369
) / Nature by A Nakao (1997) -
Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGF β receptor and functions as an antagonist of TGF β signaling. Cell 89, 1165 –1173 (1997).
(
10.1016/S0092-8674(00)80303-7
) / Cell by H Hayashi (1997) -
Topper, J. N. et al. Vascular MAD s: Two novel MAD -related genes selectively inducible by flow in human vascular endothelium. Proc. Natl Acad. Sci. USA 94, 9314 –9319 (1997).
(
10.1073/pnas.94.17.9314
) / Proc. Natl Acad. Sci. USA by JN Topper (1997) -
Tsuneizumi, K. et al. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389, 627 –631 (1997).
(
10.1038/39362
) / Nature by K Tsuneizumi (1997) -
Watabe, T. et al. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev. 9, 3038 –3050 (1995).
(
10.1101/gad.9.24.3038
) / Genes Dev. by T Watabe (1995) -
Kaufmann, E. et al. Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of the early response gene XFD-1 ′ in Xenopus laevis embryos. EMBO J. 15, 6739 –6749 (1996).
(
10.1002/j.1460-2075.1996.tb01063.x
) / EMBO J. by E Kaufmann (1996) -
Ladher, R., Mohun, T. J., Smith, J. C. & Snape, A. M. Xom : a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122, 2385 –2394 (1996).
(
10.1242/dev.122.8.2385
) / Development by R Ladher (1996) -
Gawantka, V., Delius, H., Hirschfeld, K., Blumenstock, C. & Niehrs, C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14, 6268 –6279 (1995).
(
10.1002/j.1460-2075.1995.tb00317.x
) / EMBO J. by V Gawantka (1995) -
Suzuki, A., Ueno, N. & Hemmati-Brivvanlou, A. Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037 –3044 (1997).
(
10.1242/dev.124.16.3037
) / Development by A Suzuki (1997) -
Keeton, M. R., Curriden, S. A., van Zonneveld, A. J. & Loskutoff, D. J. Identification of regulatory sequences in the type I plasminogen activator inhibitor gene responsive to transforming growth factor β. J. Biol. Chem. 266, 23048 –23052 (1991).
(
10.1016/S0021-9258(18)54461-6
) / J. Biol. Chem. by MR Keeton (1991) -
Kim, S. J. et al. Autoinduction of transforming growth factor β1 is mediated by the AP-1 complex. Mol. Cell. Biol. 10, 1492 –1497 (1990).
(
10.1128/MCB.10.4.1492
) / Mol. Cell. Biol. by SJ Kim (1990) -
Datto, M. B., Yu, Y. & Wang, X.-F. Functional analysis of the transforming growth factor β responsive elements in the WAF1/Cip1/p21 promoter. J. Biol. Chem. 270, 28623 –28628 (1995).
(
10.1074/jbc.270.48.28623
) / J. Biol. Chem. by MB Datto (1995) -
Li, J.-M., Nichols, M. A., Chandrasekharan, S., Xiong, Y. & Wang, X.-F. Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270, 26750 –26753 (1995).
(
10.1074/jbc.270.45.26750
) / J. Biol. Chem. by J-M Li (1995) -
Chen, X., Rubock, M. J. & Whitman, M. Atranscriptional partner for MAD proteins in TGF- β signalling. Nature 383, 691 –696 (1996).
(
10.1038/383691a0
) / Nature by X Chen (1996) -
Chen, X. et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 85 –89 (1997).
(
10.1038/38008
) / Nature by X Chen (1997) -
Arora, K. et al. The Drosophila schnurri gene acts in the Dpp/TGF- β signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81, 781 –790 (1995).
(
10.1016/0092-8674(95)90539-1
) / Cell by K Arora (1995) -
Grieder, N. C., Nellen, D., Burke, R., Basler, K. & Affolter, M. schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 81, 791 –800 (1995).
(
10.1016/0092-8674(95)90540-5
) / Cell by NC Grieder (1995) -
Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivvanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177 –3184 (1997).
(
10.1242/dev.124.16.3177
) / Development by PA Wilson (1997) -
Charng, M.-J., Kinnunen, P., Hawker, J., Brand, T. & Schneider, M. D. FKBP-12 recognition is dispensable for signal generation by type I transforming growth factor- β receptors. J. Biol. Chem. 271, 22941 –22944 (1996).
(
10.1074/jbc.271.38.22941
) / J. Biol. Chem. by M-J Charng (1996) -
Wang, T. et al. The immunophilin FKBP12 functions as a common inhibitor of the TGF β family type I receptors. Cell 86, 435 –444 (1996).
(
10.1016/S0092-8674(00)80116-6
) / Cell by T Wang (1996) -
Chen, Y. G., Liu, F. & Massagué, J. Mechanism of TGF β receptor inhibition by FKBP12. EMBO J. 16, 3866 –3876 (1997).
(
10.1093/emboj/16.13.3866
) / EMBO J. by YG Chen (1997) -
Kawabata, M., Imamura, T., Miyazono, K., Engel, M. E. & Moses, H. L. Interaction of the transforming growth factor- β type I receptor with farnesyl-protein transferase- α. J. Biol. Chem. 270, 29628 –29631 (1995).
(
10.1074/jbc.270.10.5625
) / J. Biol. Chem. by M Kawabata (1995) -
Ventura, F., Liu, F., Doody, J. & Massagué, J. Interaction of transforming growth factor- β receptor I with farnesyl-protein transferase- α in yeast and mammalian cells. J. Biol. Chem. 271, 13931 –13934 (1996).
(
10.1074/jbc.271.24.13931
) / J. Biol. Chem. by F Ventura (1996) -
Wang, T. et al. The p21RAS farnesyltransferase α subunit in TGF- β and activin signaling. Science 271, 1120 –1122 (1996).
(
10.1126/science.271.5252.1120
) / Science by T Wang (1996) -
Reddy, K. B., Karode, M. C., Harmony, J. A. K. & Howe, P. H. Interaction of transforming growth factor β receptors with apolipoprotein J/clusterin. Biochemistry 35, 309 –314 (1996).
(
10.1021/bi951880a
) / Biochemistry by KB Reddy (1996) -
Chen, R.-H., Miettinen, P. J., Maruoka, E. M., Choy, L. & Derynck, R. AWD-domain protein that is associated with and phosphorylated by the type II TGF- β receptor. Nature 377, 548 –552 (1995).
(
10.1038/377548a0
) / Nature by R-H Chen (1995) -
Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF- β signal transduction. Science 270, 2008 –2011 (1995).
(
10.1126/science.270.5244.2008
) / Science by K Yamaguchi (1995) -
Hartsough, M. T. et al. Altered transforming growth factor β signaling in epithelial cells when Ras activation is blocked. J. Biol. Chem. 271, 22368 –22375 (1996).
(
10.1074/jbc.271.37.22368
) / J. Biol. Chem. by MT Hartsough (1996) -
Mucsi, I., Skorecki, K. L. & Goldberg, H. J. Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor- β1 on gene expression. J. Biol. Chem. 271, 16567 –16572 (1996).
(
10.1074/jbc.271.28.16567
) / J. Biol. Chem. by I Mucsi (1996) -
Atfi, A., Djelloul, S., Chastre, E., Davis, R. R. & Gespach, C. Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor beta-mediated signaling. J. Biol. Chem. 272, 1429 –1432 (1997).
(
10.1074/jbc.272.3.1429
) / J. Biol. Chem. by A Atfi (1997) - Frey, R. S. & Mulder, K. M. Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase Jun N-terminal kinase activation by transforming growth factor β in the negative growth control of breast cancer cells. Cancer Res. 57, 628 –633 (1997). / Cancer Res. by RS Frey (1997)
-
Cui, W. et al. TGF β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531 –542 (1996).
(
10.1016/S0092-8674(00)80127-0
) / Cell by W Cui (1996) -
Markowitz, S. D. & Roberts, A. B. Tumor suppressor activity of the TGF- β pathway in human cancers. Cytokine & Growth Factor Rev. 7, 93 –102 (1996).
(
10.1016/1359-6101(96)00001-9
) / Cytokine & Growth Factor Rev. by SD Markowitz (1996) -
Markowitz, S. et al. Inactivation of the type II TGF- β receptor in colon cancer cells with microsatellite instability. Science 268, 1336 –1338 (1995).
(
10.1126/science.7761852
) / Science by S Markowitz (1995) -
Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350 –353 (1996).
(
10.1126/science.271.5247.350
) / Science by SA Hahn (1996) -
Riggins, G. J. et al. Mad -related genes in the human. Nature Genet. 13, 347 –349 (1996).
(
10.1038/ng0796-347
) / Nature Genet. by GJ Riggins (1996) - Riggins, R. G., Kinzler, K. W., Vogelstein, B. & Thiagalingamm, S. Frequency of Smad gene mutations in human cancers. Cancer Res. 57, 2578 –2580 (1997). / Cancer Res. by RG Riggins (1997)
-
Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF- β-induced cell-cycle arrest. Nature 371, 257 –261 (1994).
(
10.1038/371257a0
) / Nature by GJ Hannon (1994) -
Iavarone, A. & Massagué, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF- β in cells lacking the CDK inhibitor p15. Nature 387, 417 –422 (1997).
(
10.1038/387417a0
) / Nature by A Iavarone (1997) -
Galaktionov, K., Chen, X. & Beach, D. Cdc25 cell-cycle phosphatase as a target of c-Myc. Nature 382, 511 –517 (1996).
(
10.1038/382511a0
) / Nature by K Galaktionov (1996) -
Pietenpol, J. A. et al. TGF- β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61, 777 –785 (1990).
(
10.1016/0092-8674(90)90188-K
) / Cell by JA Pietenpol (1990) -
Ihle, J. N. STATs: Signal transducers and activators of transcription. Cell 84, 331 –334 (1996).
(
10.1016/S0092-8674(00)81277-5
) / Cell by JN Ihle (1996) -
Kretzschmar, M., Doody, J. & Massagué, J. Opposing BMP and EGF signalling pathways converge on the TGF- β family mediator Smad1. Nature 389, 618 –622 (1997).
(
10.1038/39348
) / Nature by M Kretzschmar (1997)
Dates
Type | When |
---|---|
Created | 23 years ago (July 26, 2002, 4:37 a.m.) |
Deposited | 2 years, 3 months ago (May 16, 2023, 10:38 p.m.) |
Indexed | 2 hours, 29 minutes ago (Aug. 24, 2025, 4:50 a.m.) |
Issued | 27 years, 8 months ago (Dec. 1, 1997) |
Published | 27 years, 8 months ago (Dec. 1, 1997) |
Published Print | 27 years, 8 months ago (Dec. 1, 1997) |
@article{Heldin_1997, title={TGF-β signalling from cell membrane to nucleus through SMAD proteins}, volume={390}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/37284}, DOI={10.1038/37284}, number={6659}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Heldin, Carl-Henrik and Miyazono, Kohei and ten Dijke, Peter}, year={1997}, month=dec, pages={465–471} }