Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Neuroscience (297)
References
169
Referenced
835
-
Jessell, T. M. & Sanes, J. R. Development. The decade of the developing brain. Curr. Opin. Neurobiol. 10, 599–611 (2000).
(
10.1016/S0959-4388(00)00136-7
) / Curr. Opin. Neurobiol. by TM Jessell (2000) - Cowan, W. M., Sudhof, T. C. & Stevens, C. F. (eds) Synapses (Johns Hopkins Univ. Press, Baltimore, 2001). / Synapses by WM Cowan (2001)
-
Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).A comprehensive review of NMJ development, covering topics not included here, such as presynaptic development, synapse elimination, regeneration and comparison with neuron–neuron synapses.
(
10.1146/annurev.neuro.22.1.389
) / Annu. Rev. Neurosci. by JR Sanes (1999) -
Langley, J. On nerve-endings and on special excitable substances in cells. Proc. R. Soc. Lond. B 78, 170–194 (1906).
(
10.1098/rspb.1906.0056
) / Proc. R. Soc. Lond. B by J Langley (1906) -
Cartaud, J. et al. The Torpedo electrocyte: a model system to study membrane–cytoskeleton interactions at the postsynaptic membrane. Microsc. Res. Tech. 49, 73–83 (2000).
(
10.1002/(SICI)1097-0029(20000401)49:1<73::AID-JEMT8>3.0.CO;2-L
) / Microsc. Res. Tech. by J Cartaud (2000) -
Berg, D. K., Kelly, R. B., Sargent, P. B., Williamson, P. & Hall, Z. W. Binding of α–bungarotoxin to acetylcholine receptors in mammalian muscle. Proc. Natl Acad. Sci. USA 69, 147–151 (1972).
(
10.1073/pnas.69.1.147
) / Proc. Natl Acad. Sci. USA by DK Berg (1972) -
Lee, C. Y., Tseng, L. F. & Chin, T. H. Influence of denervation on the localization of neurotoxins from clapid venom in rat diaphragm. Nature 215, 1177–1178 (1967).
(
10.1038/2151177a0
) / Nature by CY Lee (1967) -
Fambrough, D. M. Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59, 165–227 (1979).
(
10.1152/physrev.1979.59.1.165
) / Physiol. Rev. by DM Fambrough (1979) -
Burden, S. J. The formation of neuromuscular synapses. Genes Dev. 12, 133–148 (1998).
(
10.1101/gad.12.2.133
) / Genes Dev. by SJ Burden (1998) -
Duclert, A. & Changeux, J. P. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol. Rev. 75, 339–368 (1995).
(
10.1152/physrev.1995.75.2.339
) / Physiol. Rev. by A Duclert (1995) - Huh, K. H. & Fuhrer, C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol. Neurobiol. (in the press).
-
Edwards, C. & Frisch, H. L. A model for the localization of acetylcholine receptors at the muscle endplate. J. Neurobiol. 7, 377–381 (1976).
(
10.1002/neu.480070409
) / J. Neurobiol. by C Edwards (1976) -
Young, S. H. & Poo, M. M. Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole. J. Neurosci. 3, 225–231 (1983).
(
10.1523/JNEUROSCI.03-01-00225.1983
) / J. Neurosci. by SH Young (1983) -
Merlie, J. P. & Sanes, J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature 317, 66–68 (1985).
(
10.1038/317066a0
) / Nature by JP Merlie (1985) -
Schaeffer, L., De Kerchove d'Exaerde, A. & Changeux, J. P. Targeting transcription to the neuromuscular synapse. Neuron 31, 15–22 (2001).
(
10.1016/S0896-6273(01)00353-1
) / Neuron by L Schaeffer (2001) -
Anderson, M. J. & Cohen, M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J. Physiol. (Lond.) 268, 757–773 (1977).
(
10.1113/jphysiol.1977.sp011880
) / J. Physiol. (Lond.) by MJ Anderson (1977) -
Frank, E. & Fischbach, G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J. Cell Biol. 83, 143–158 (1979).References 16 and 17 are the classic papers showing that motor axons organize postsynaptic differentiation.
(
10.1083/jcb.83.1.143
) / J. Cell Biol. by E Frank (1979) -
Ziskind-Conhaim, L., Geffen, I. & Hall, Z. W. Redistribution of acetylcholine receptors on developing rat myotubes. J. Neurosci. 4, 2346–2349 (1984).
(
10.1523/JNEUROSCI.04-09-02346.1984
) / J. Neurosci. by L Ziskind-Conhaim (1984) -
Role, L. W., Mattossian, V. R., O'Brien, R. J. & Fischbach, G. D. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes. J. Neurosci. 5, 2197–2204 (1985).
(
10.1523/JNEUROSCI.05-08-02197.1985
) / J. Neurosci. by LW Role (1985) -
Kuromi, H. & Kidokoro, Y. Nerve disperses preexisting acetylcholine receptor clusters prior to induction of receptor accumulation in Xenopus muscle cultures. Dev. Biol. 103, 53–61 (1984).
(
10.1016/0012-1606(84)90006-X
) / Dev. Biol. by H Kuromi (1984) -
Falls, D. L., Rosen, K. M., Corfas, G., Lane, W. S. & Fischbach, G. D. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72, 801–815 (1993).
(
10.1016/0092-8674(93)90407-H
) / Cell by DL Falls (1993) -
Peng, H. B., Baker, L. P. & Chen, Q. Induction of synaptic development in cultured muscle cells by basic fibroblast growth factor. Neuron 6, 237–246 (1991).
(
10.1016/0896-6273(91)90359-8
) / Neuron by HB Peng (1991) -
Oh, T. H. & Markelonis, G. J. Chicken serum transferrin duplicates the myotrophic effects of sciatin on cultured muscle cells. J. Neurosci. Res. 8, 535–545 (1982).
(
10.1002/jnr.490080239
) / J. Neurosci. Res. by TH Oh (1982) -
Knaack, D., Shen, I., Salpeter, M. M. & Podleski, T. R. Selective effects of ascorbic acid on acetylcholine receptor number and distribution. J. Cell Biol. 102, 795–802 (1986).
(
10.1083/jcb.102.3.795
) / J. Cell Biol. by D Knaack (1986) -
Vogel, Z. et al. Laminin induces acetylcholine receptor aggregation on cultured myotubes and enhances the receptor aggregation activity of a neuronal factor. J. Neurosci. 3, 1058–1068 (1983).
(
10.1523/JNEUROSCI.03-05-01058.1983
) / J. Neurosci. by Z Vogel (1983) -
Fontaine, B., Klarsfeld, A. & Changeux, J. P. Calcitonin gene-related peptide and muscle activity regulate acetylcholine receptor α-subunit mRNA levels by distinct intracellular pathways. J. Cell Biol. 105, 1337–1342 (1987).
(
10.1083/jcb.105.3.1337
) / J. Cell Biol. by B Fontaine (1987) -
Zhou, H., Muramatsu, T., Halfter, W., Tsim, K. W. K. & Peng, H. B. A role of midkine in the development of the neuromuscular junction. Mol. Cell. Neurosci. 10, 56–70 (1997).
(
10.1006/mcne.1997.0638
) / Mol. Cell. Neurosci. by H Zhou (1997) -
McMahan. U. J. The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol. 55, 407–418 (1990).The first summary of McMahan's evidence that agrin is a crucial nerve-derived organizer of postsynaptic differentiation at the neuromuscular junction.
(
10.1101/SQB.1990.055.01.041
) / Cold Spring Harb. Symp. Quant. Biol. by UJ McMahan (1990) -
Bowe, M. A. & Fallon, J. R. The role of agrin in synapse formation. Annu. Rev. Neurosci. 18, 443–462 (1995).
(
10.1146/annurev.ne.18.030195.002303
) / Annu. Rev. Neurosci. by MA Bowe (1995) -
McMahan, U. J. et al. Agrin isoforms and their role in synaptogenesis. Curr. Opin. Cell Biol. 4, 869–874 (1992).
(
10.1016/0955-0674(92)90113-Q
) / Curr. Opin. Cell Biol. by UJ McMahan (1992) -
Wallace, B. G. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus. J. Neurosci. 9, 1294–1302 (1989).
(
10.1523/JNEUROSCI.09-04-01294.1989
) / J. Neurosci. by BG Wallace (1989) -
Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).Use of gene targeting to show a crucial role for agrin in formation of the postsynaptic apparatus in vivo.
(
10.1016/S0092-8674(00)81253-2
) / Cell by M Gautam (1996) -
Cohen, I., Rimer, M., Lømo, T. & McMahan, U. J. Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Mol. Cell. Neurosci. 9, 237–253 (1997).
(
10.1006/mcne.1997.0623
) / Mol. Cell. Neurosci. by I Cohen (1997) -
Meier, T. et al. Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J. Neurosci. 17, 6534–6544 (1997).References 33 and 34 are gain-of-function studies showing that agrin can substitute for the nerve in organizing an elaborate postsynaptic apparatus.
(
10.1523/JNEUROSCI.17-17-06534.1997
) / J. Neurosci. by T Meier (1997) -
Bezakova, G. & Lømo, T. Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AChR) aggregates in skeletal muscle fibers. J. Cell Biol. 153, 1453–1463 (2001).
(
10.1083/jcb.153.7.1453
) / J. Cell Biol. by G Bezakova (2001) -
Gesemann, M., Denzer, A. J. & Ruegg, M. A. Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. J. Cell Biol. 128, 625–636 (1995).
(
10.1083/jcb.128.4.625
) / J. Cell Biol. by M Gesemann (1995) -
Hoch, W., Campanelli, J. T., Harrison, S. & Scheller, R. H. Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. EMBO J. 13, 2814–2821 (1994).
(
10.1002/j.1460-2075.1994.tb06575.x
) / EMBO J. by W Hoch (1994) -
Burgess, R. W., Nguyen, Q. T., Son, Y.-J., Lichtman, J. W. & Sanes, J. R. Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23, 33–44 (1999).Isoform-specific mutants and analysis of chimeric synapses showed that the agrin required for NMJ formation is derived from the motor neuron, not the muscle.
(
10.1016/S0896-6273(00)80751-5
) / Neuron by RW Burgess (1999) -
Martin, P. T. & Sanes, J. R. Role for a synapse-specific carbohydrate in agrin-induced clustering of acetylcholine receptors. Neuron 14, 743–754 (1995).
(
10.1016/0896-6273(95)90218-X
) / Neuron by PT Martin (1995) -
Sanes, J. R. et al. Agrin receptors at the skeletal neuromuscular junction. Ann. NY Acad. Sci. 841, 1–13 (1998).
(
10.1111/j.1749-6632.1998.tb10905.x
) / Ann. NY Acad. Sci. by JR Sanes (1998) -
Burkin, D. J., Gu, M., Hodges, B. L., Campanelli, J. T. & Kaufman, S. J. A functional role for specific spliced variants of the α7β1 integrin in acetylcholine receptor clustering. J. Cell Biol. 143, 1067–1075 (1998).
(
10.1083/jcb.143.4.1067
) / J. Cell Biol. by DJ Burkin (1998) -
Sugiyama, J., Bowen, D. C. & Hall, Z. W. Dystroglycan binds nerve and muscle agrin. Neuron 13, 103–115 (1994).
(
10.1016/0896-6273(94)90462-6
) / Neuron by J Sugiyama (1994) -
Gee, S. H., Montanaro, F., Lindenbaum, M. H. & Carbonetto, S. Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77, 675–686 (1994).
(
10.1016/0092-8674(94)90052-3
) / Cell by SH Gee (1994) -
Campanelli, J. T., Roberds, S. L., Campbell, K. P. & Scheller, R. H. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77, 663–674 (1994).
(
10.1016/0092-8674(94)90051-5
) / Cell by JT Campanelli (1994) -
Bowe, M. A., Deyst, K. A., Leszyk, J. D. & Fallon, J. R. Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron 12, 1173–1180 (1994).
(
10.1016/0896-6273(94)90324-7
) / Neuron by MA Bowe (1994) -
Jennings, C. G. B., Dyer, S. M. & Burden, S. J. Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc. Natl Acad. Sci. USA 90, 2895–2899 (1993).
(
10.1073/pnas.90.7.2895
) / Proc. Natl Acad. Sci. USA by CGB Jennings (1993) -
Valenzuela, D. M. et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573–584 (1995).
(
10.1016/0896-6273(95)90146-9
) / Neuron by DM Valenzuela (1995) -
Daggett, D. F. et al. The role of an agrin–growth factor interaction in ACh receptor clustering. Mol. Cell. Neurosci. 8, 272–285 (1996).
(
10.1006/mcne.1996.0063
) / Mol. Cell. Neurosci. by DF Daggett (1996) -
Denzer, A. J. et al. Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J. 17, 335–343 (1998).
(
10.1093/emboj/17.2.335
) / EMBO J. by AJ Denzer (1998) -
Martin, P. T., Kaufman, S. J., Kramer, R. H. & Sanes, J. R. Synaptic integrins in developing, adult, and mutant muscle: selective association of α1, α7A, and α7B integrins with the neuromuscular junction. Dev. Biol. 174, 125–139 (1996).
(
10.1006/dbio.1996.0057
) / Dev. Biol. by PT Martin (1996) -
Martin, P. T. & Sanes, J. R. Integrins mediate adhesion to agrin and modulate agrin signaling. Development 124, 3909–3917 (1997).
(
10.1242/dev.124.19.3909
) / Development by PT Martin (1997) -
DeChiara, T. M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 501–512 (1996).The use of gene targeting to show a crucial role for MuSK in formation of the postsynaptic apparatus in vivo.
(
10.1016/S0092-8674(00)81251-9
) / Cell by TM DeChiara (1996) -
Glass, D. J. et al. Agrin acts via a MuSK receptor complex. Cell 85, 513–523 (1996).
(
10.1016/S0092-8674(00)81252-0
) / Cell by DJ Glass (1996) -
Glass, D. J. et al. MuSK kinase domain sufficient for phosphorylation but not clustering of acetylcholine receptors. Proc. Natl Acad. Sci. USA 94, 8848–8853 (1997).
(
10.1073/pnas.94.16.8848
) / Proc. Natl Acad. Sci. USA by DJ Glass (1997) -
Zhou, H., Glass, D., Yancopoulos, G. & Sanes, J. Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J. Cell Biol. 146, 1133–1146 (1999).
(
10.1083/jcb.146.5.1133
) / J. Cell Biol. by H Zhou (1999) -
Moscoso, L. M., Cremer, H. & Sanes, J. R. Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J. Neurosci. 18, 1465–1477 (1998).
(
10.1523/JNEUROSCI.18-04-01465.1998
) / J. Neurosci. by LM Moscoso (1998) -
Patton, B. L. et al. Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nature Neurosci. 4, 597–604 (2001).
(
10.1038/88414
) / Nature Neurosci. by BL Patton (2001) -
Grady, R. M. et al. Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin–glycoprotein complex. Neuron 25, 279–293 (2000).This paper and references 59 and 150 report on the use of mutant muscles and cell lines to show that components of the dystrophin–glycoprotein complex are dispensible for AChR clustering, but crucial for its maintenance.
(
10.1016/S0896-6273(00)80894-6
) / Neuron by RM Grady (2000) -
Jacobson, C., Cote, P. D., Rossi, S. G., Rotundo, R. L. & Carbonetto, S. The dystroglycan complex is necessary for stabilization of acetylcholine receptor clusters at neuromuscular junctions and formation of the synaptic basement membrane. J. Cell Biol. 152, 435–450 (2001).
(
10.1083/jcb.152.3.435
) / J. Cell Biol. by C Jacobson (2001) -
Gesemann, M. et al. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron 16, 755–767 (1996).
(
10.1016/S0896-6273(00)80096-3
) / Neuron by M Gesemann (1996) -
Xie, M. H., Yuan, J., Adams, C. & Gurney, A. Direct demonstration of MuSK involvement in acetylcholine receptor clustering through identificaiton of agonist ScFv. Nature Biotechnol. 15, 768–771 (1997).
(
10.1038/nbt0897-768
) / Nature Biotechnol. by MH Xie (1997) -
Hopf, C. & Hoch, W. Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes. J. Biol. Chem. 273, 6467–6473 (1998).
(
10.1074/jbc.273.11.6467
) / J. Biol. Chem. by C Hopf (1998) -
Jones, G., Moore, C., Hashemolhosseini, S. & Brenner, H. R. Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J. Neurosci. 19, 3376–3383 (1999).
(
10.1523/JNEUROSCI.19-09-03376.1999
) / J. Neurosci. by G Jones (1999) -
Noakes, P. G., Phillips, W. D., Hanley, T. A., Sanes, J. R. & Merlie, J. P. 43K protein and acetylcholine receptors colocalize during the initial stages of neuromuscular synapse formation in vivo. Dev. Biol. 155, 275–280 (1993).
(
10.1006/dbio.1993.1025
) / Dev. Biol. by PG Noakes (1993) -
LaRochelle, W. J. & Froehner, S. C. Determination of the tissue distributions and relative concentrations of the postsynaptic 43-kDa protein and the acetylcholine receptor in Torpedo. J. Biol. Chem. 261, 5270–5274 (1986).
(
10.1016/S0021-9258(19)57209-X
) / J. Biol. Chem. by WJ LaRochelle (1986) -
Froehner, S. C., Luetje, C. W., Scotland, P. B. & Patrick, J. The postsynaptic 43K protein clusters muscle nicotinic acetylcholine receptors in Xenopus oocytes. Neuron 5, 403–410 (1990).
(
10.1016/0896-6273(90)90079-U
) / Neuron by SC Froehner (1990) -
Phillips, W. D. et al. ACh receptor-rich membrane domains organized in fibroblasts by recombinant 43-kilodalton protein. Science 251, 568–570 (1991).
(
10.1126/science.1703661
) / Science by WD Phillips (1991) -
Gautam, M. et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 232–236 (1995).The use of gene targeting to show an important role for rapsyn in the formation of the postsynaptic apparatus in vivo.
(
10.1038/377232a0
) / Nature by M Gautam (1995) -
Gillespie, S. K., Balasubramanian, S., Fung, E. T. & Huganir, R. L. Rapsyn clusters and activates the synapse-specific receptor tyrosine kinase MuSK. Neuron 16, 953–962 (1996).
(
10.1016/S0896-6273(00)80118-X
) / Neuron by SK Gillespie (1996) -
Apel, E. D., Glass, D. J., Moscoso, L. M., Yancopoulos, G. D. & Sanes, J. R. Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18, 623–635 (1997).
(
10.1016/S0896-6273(00)80303-7
) / Neuron by ED Apel (1997) -
Ono, F., Higashijima, S., Shcherbatko, A., Fetcho, J. R. & Brehm, P. Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J. Neurosci. 21, 5439–5448 (2001).
(
10.1523/JNEUROSCI.21-15-05439.2001
) / J. Neurosci. by F Ono (2001) -
Grow, W. A. & Gordon, H. Acetylcholine receptors are required for postsynaptic aggregation driven by the agrin signalling pathway. Eur. J. Neurosci. 12, 467–472 (2000).
(
10.1046/j.1460-9568.2000.00923.x
) / Eur. J. Neurosci. by WA Grow (2000) -
Missias, A. C. et al. Deficient development and maintenance of postsynaptic specializations in mutant mice lacking an 'adult' acetylcholine receptor subunit. Development 124, 5075–5086 (1997).
(
10.1242/dev.124.24.5075
) / Development by AC Missias (1997) -
Fischbach, G. D. & Rosen, K. M. ARIA: a neuromuscular junction neuregulin. Annu. Rev. Neurosci. 20, 429–458 (1997).
(
10.1146/annurev.neuro.20.1.429
) / Annu. Rev. Neurosci. by GD Fischbach (1997) -
Trinidad, J. C., Fischbach, G. D. & Cohen, J. B. The Agrin/MuSK signaling pathway is spatially segregated from the neuregulin/ErbB receptor signaling pathway at the neuromuscular junction. J. Neurosci. 20, 8762–8770 (2000).
(
10.1523/JNEUROSCI.20-23-08762.2000
) / J. Neurosci. by JC Trinidad (2000) -
Moscoso, L. M. et al. Synapse-associated expression of an acetylcholine receptor-inducing protein, ARIA/heregulin, and its putative receptors, ErbB2 and ErbB3, in developing mammalian muscle. Dev. Biol. 172, 158–169 (1995).
(
10.1006/dbio.1995.0012
) / Dev. Biol. by LM Moscoso (1995) -
Rimer, M., Cohen, I., Lømo, T., Burden, S. J. & McMahan, U. J. Neuregulins and ErbB receptors at neuromuscular junctions and at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol. Cell. Neurosci. 12, 1–15 (1998).
(
10.1006/mcne.1998.0695
) / Mol. Cell. Neurosci. by M Rimer (1998) -
Zhu, X., Lai, C., Thomas, S. & Burden, S. J. Neuregulin receptors, ErbB3 and ErbB4, are localized at neuromuscular synapses. EMBO J. 14, 5842–5848 (1995).
(
10.1002/j.1460-2075.1995.tb00272.x
) / EMBO J. by X Zhu (1995) -
Altiok, N., Bessereau, J. L. & Changeux, J. P. ErbB3 and ErbB2/neu mediate the effect of heregulin on acetylcholine receptor gene expression in muscle: differential expression at the endplate. EMBO J. 14, 4258–4266 (1995).
(
10.1002/j.1460-2075.1995.tb00100.x
) / EMBO J. by N Altiok (1995) -
Jones, G. et al. Substrate-bound agrin induces expression of acetylcholine receptor ɛ-subunit gene in cultured mammalian muscle cells. Proc. Natl Acad. Sci. USA 93, 5985–5990 (1996).
(
10.1073/pnas.93.12.5985
) / Proc. Natl Acad. Sci. USA by G Jones (1996) -
Gramolini, A. O. et al. Muscle and neural isoforms of agrin increase utrophin expression in cultured myotubes via a transcriptional regulatory mechanism. J. Biol. Chem. 273, 736–743 (1998).
(
10.1074/jbc.273.2.736
) / J. Biol. Chem. by AO Gramolini (1998) -
Woldeyesus, M. T. et al. Peripheral nervous system defects in ErbB2 mutants following genetic rescue of heart development. Genes Dev. 13, 2538–2548 (1999).
(
10.1101/gad.13.19.2538
) / Genes Dev. by MT Woldeyesus (1999) -
Wolpowitz, D. et al. Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25, 79–91 (2000).
(
10.1016/S0896-6273(00)80873-9
) / Neuron by D Wolpowitz (2000) -
Lin, W. et al. Aberrant development of motor axons and neuromuscular synapses in ErbB2-deficient mice. Proc. Natl Acad. Sci. USA 97, 1299–1304 (2000).
(
10.1073/pnas.97.3.1299
) / Proc. Natl Acad. Sci. USA by W Lin (2000) -
Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001).This paper, along with references 98 and 99 , used genetic methods to show agrin- and nerve-independent initiation of postsynaptic differentiation.
(
10.1016/S0896-6273(01)00287-2
) / Neuron by X Yang (2001) -
Garratt, A. N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22, 987–996 (2000).
(
10.1002/1521-1878(200011)22:11<987::AID-BIES5>3.0.CO;2-5
) / Bioessays by AN Garratt (2000) -
Sandrock, A. W. Jr et al. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276, 599–603 (1997).
(
10.1126/science.276.5312.599
) / Science by AW Sandrock Jr (1997) -
Gautam, M., DeChiara, T. M., Glass, D. J., Yancopoulos, G. D. & Sanes, J. R. Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn. Brain Res. Dev. Brain Res. 114, 171–178 (1999).
(
10.1016/S0165-3806(99)00013-9
) / Brain Res. Dev. Brain Res. by M Gautam (1999) -
Meier, T. et al. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J. Cell Biol. 141, 715–726 (1998).
(
10.1083/jcb.141.3.715
) / J. Cell Biol. by T Meier (1998) -
Briguet, A. & Ruegg, M. A. The Ets transcription factor GABP is required for postsynaptic differentiation in vivo. J. Neurosci. 20, 5989–5996 (2000).
(
10.1523/JNEUROSCI.20-16-05989.2000
) / J. Neurosci. by A Briguet (2000) -
Creazzo, T. L. & Sohal, G. S. Neural control of embryonic acetylcholine receptor in skeletal muscle. Cell Tissue Res. 228, 1–12 (1983).
(
10.1007/BF00206259
) / Cell Tissue Res. by TL Creazzo (1983) -
Harris, A. J. Embryonic growth and innervation of rat skeletal muscles. III. Neural regulation of junctional and extra-junctional acetylcholine receptor clusters. Phil. Trans. R. Soc. Lond. B 293, 287–314 (1981).A classic and long-maligned demonstration that AChR clusters form, and are arranged in an end-plate band, even in aneural muscle.
(
10.1098/rstb.1981.0078
) / Phil. Trans. R. Soc. Lond. B by AJ Harris (1981) -
Dahm, L. M. & Landmesser, L. T. The regulation of synaptogenesis during normal development and following activity blockade. J. Neurosci. 11, 238–255 (1991).
(
10.1523/JNEUROSCI.11-01-00238.1991
) / J. Neurosci. by LM Dahm (1991) -
Phillips, W. D., Lai, K. & Bennett, M. R. Spatial distribution and size of acetylcholine receptor clusters determined by motor nerves in developing chick muscles. J. Neurocytol. 14, 309–325 (1985).
(
10.1007/BF01258455
) / J. Neurocytol. by WD Phillips (1985) -
Liu, D. W. & Westerfield, M. Clustering of muscle acetylcholine receptors requires motoneurons in live embryos, but not in cell culture. J. Neurosci. 12, 1859–1866 (1992).
(
10.1523/JNEUROSCI.12-05-01859.1992
) / J. Neurosci. by DW Liu (1992) -
Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).
(
10.1016/S0896-6273(01)80026-X
) / Neuron by S Arber (1999) -
Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999).
(
10.1016/S0896-6273(01)80027-1
) / Neuron by J Thaler (1999) -
Yang, X., Li, W., Prescott, E. D., Burden, S. J. & Wang, J. C. DNA topoisomerase IIβ and neural development. Science 287, 131–134 (2000).
(
10.1126/science.287.5450.131
) / Science by X Yang (2000) -
Lin, W. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064 (2001).
(
10.1038/35074025
) / Nature by W Lin (2001) -
Kues, W. A., Brenner, H. R., Sakmann, B. & Witzemann, V. Local neurotrophic repression of gene transcripts encoding fetal AChRs at rat neuromuscular synapses. J. Cell Biol. 130, 949–957 (1995).
(
10.1083/jcb.130.4.949
) / J. Cell Biol. by WA Kues (1995) -
Dai, Z. & Peng, H. B. A role of tyrosine phosphatase in acetylcholine receptor cluster dispersal and formation. J. Cell Biol. 141, 1613–1624 (1998).
(
10.1083/jcb.141.7.1613
) / J. Cell Biol. by Z Dai (1998) -
Parkhomovskiy, N., Kammesheidt, A. & Martin, P. T. N-Acetyllactosamine and the CT carbohydrate antigen mediate agrin-dependent activation of MuSK and acetylcholine receptor clustering in skeletal muscle. Mol. Cell. Neurosci. 15, 380–397 (2000).
(
10.1006/mcne.2000.0835
) / Mol. Cell. Neurosci. by N Parkhomovskiy (2000) -
Herbst, R. & Burden, S. J. The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J. 19, 67–77 (2000).
(
10.1093/emboj/19.1.67
) / EMBO J. by R Herbst (2000) -
Apel, E. D., Lewis, R. M., Grady, R. M. & Sanes, J. R. Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J. Biol. Chem. 275, 31986–31995 (2000).
(
10.1074/jbc.M004775200
) / J. Biol. Chem. by ED Apel (2000) -
Strochlic, L. et al. MAGI-1c: a synaptic MAGUK interacting with MuSK at the vertebrate neuromuscular junction. J. Cell Biol. 153, 1127–1132 (2001).
(
10.1083/jcb.153.5.1127
) / J. Cell Biol. by L Strochlic (2001) -
Bloch, R. J. & Pumplin, D. W. Molecular events in synaptogenesis: nerve–muscle adhesion and postsynaptic differentiation. Am. J. Physiol. 254, C345–C364 (1988).
(
10.1152/ajpcell.1988.254.3.C345
) / Am. J. Physiol. by RJ Bloch (1988) -
Meier, T., Perez, G. M. & Wallace, B. G. Immobilization of nicotinic acetylcholine receptors in mouse C2 myotubes by agrin-induced protein tyrosine phosphorylation. J. Cell Biol. 131, 441–451 (1995).
(
10.1083/jcb.131.2.441
) / J. Cell Biol. by T Meier (1995) -
Dai, Z., Luo, X., Xie, H. & Peng, H. B. The actin-driven movement and formation of acetylcholine receptor clusters. J. Cell Biol. 150, 1321–1334 (2000).
(
10.1083/jcb.150.6.1321
) / J. Cell Biol. by Z Dai (2000) -
Weston, C., Yee, B., Hod, E. & Prives, J. Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J. Cell Biol. 150, 205–212 (2000).
(
10.1083/jcb.150.1.205
) / J. Cell Biol. by C Weston (2000) -
Uhm, C. S., Neuhuber, B., Lowe, B., Crocker, V. & Daniels, M. P. Synapse-forming axons and recombinant agrin induce microprocess formation on myotubes. J. Neurosci. (in the press).
(
10.1523/JNEUROSCI.21-24-09678.2001
) -
Yoshihara, C. M. & Hall, Z. W. Increase expression of the 43-kD protein disrupts acetylcholine receptor clustering in myotubes. J. Cell Biol. 122, 169–179 (1993).
(
10.1083/jcb.122.1.169
) / J. Cell Biol. by CM Yoshihara (1993) -
Han, H., Noakes, P. G. & Phillips, W. D. Overexpression of rapsyn inhibits agrin-induced acetylcholine receptor clustering in muscle cells. J. Neurocytol. 28, 763–775 (1999).
(
10.1023/A:1007098406748
) / J. Neurocytol. by H Han (1999) -
Montanaro, F. et al. Laminin and α-dystroglycan mediate acetylcholine receptor aggregation via a MuSK-independent pathway. J. Neurosci. 18, 1250–1260 (1998).
(
10.1523/JNEUROSCI.18-04-01250.1998
) / J. Neurosci. by F Montanaro (1998) -
Sugiyama, J. E., Glass, D. J., Yancopoulos, G. D. & Hall, Z. W. Laminin-induced acetylcholine receptor clustering: an alternative pathway. J. Cell Biol 139, 181–191 (1997).
(
10.1083/jcb.139.1.181
) / J. Cell Biol by JE Sugiyama (1997) -
McDearmon, E. L., Combs, A. C. & Ervasti, J. M. Differential Vicia villosa agglutinin reactivity identifies three distinct dystroglycan complexes in skeletal muscle. J. Biol. Chem. 276, 35078–35086 (2001).
(
10.1074/jbc.M103843200
) / J. Biol. Chem. by EL McDearmon (2001) -
Smith, M. A. & Slater, C. R. Spatial distribution of acetylcholine receptors at developing chick neuromuscular junctions. J. Neurocytol. 12, 993–1005 (1983).
(
10.1007/BF01153346
) / J. Neurocytol. by MA Smith (1983) -
Sanes, J. R. & Lichtman, J. W. Can molecules explain long-term potentiation? Nature Neurosci. 2, 597–604 (1999).
(
10.1038/10154
) / Nature Neurosci. by JR Sanes (1999) -
Wood, S. J. & Slater, C. R. Safety factor at the neuromuscular junction. Prog. Neurobiol. 64, 393–429 (2001).
(
10.1016/S0301-0082(00)00055-1
) / Prog. Neurobiol. by SJ Wood (2001) -
Caldwell, J. H. Clustering of sodium channels at the neuromuscular junction. Microsc. Res. Tech. 49, 84–89 (2000).
(
10.1002/(SICI)1097-0029(20000401)49:1<84::AID-JEMT9>3.0.CO;2-E
) / Microsc. Res. Tech. by JH Caldwell (2000) -
Steinbach, J. H. Developmental changes in acetylcholine receptors at rat skeletal neuromuscular junctions. Dev. Biol. 84, 267–276 (1981).
(
10.1016/0012-1606(81)90394-8
) / Dev. Biol. by JH Steinbach (1981) -
Slater, C. R. Postnatal maturation of nerve–muscle junctions in hindlimb muscles of the mouse. Dev. Biol. 94, 11–22 (1982).
(
10.1016/0012-1606(82)90063-X
) / Dev. Biol. by CR Slater (1982) - Bewick, G. S., Young, C. & Slater, C. R. Spatial relationships of utrophin, dystrophin, β-dystroglycan and β-spectrin to acetylcholine receptor clusters during postnatal maturation of the rat neuromuscular junction. J. Neurocytol. 25, 367–379 (1996). / J. Neurocytol. by GS Bewick (1996)
-
Marques, M. J., Conchello, J. A. & Lichtman, J. W. From plaque to pretzel: fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J. Neurosci. 20, 3663–3675 (2000).A novel imaging method used to follow postnatal changes in postsynaptic topography, including acquisition of gutters, folds and branches.
(
10.1523/JNEUROSCI.20-10-03663.2000
) / J. Neurosci. by MJ Marques (2000) -
Balice-Gordon, R. J., Breedlove, S. M., Bernstein, S. & Lichtman, J. W. Neuromuscular junctions shrink and expand as muscle fiber size is manipulated: in vivo observations in the androgen-sensitive bulbocavernosus muscle of mice. J. Neurosci. 10, 2660–2671 (1990).
(
10.1523/JNEUROSCI.10-08-02660.1990
) / J. Neurosci. by RJ Balice-Gordon (1990) -
Balice-Gordon, R. J. & Lichtman, J. W. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse. J. Neurosci. 10, 894–908 (1990).
(
10.1523/JNEUROSCI.10-03-00894.1990
) / J. Neurosci. by RJ Balice-Gordon (1990) -
Balice-Gordon, R. J., Chua, C. K., Nelson, C. C. & Lichtman, J. W. Gradual loss of synaptic cartels precedes axon withdrawal at developing neuromuscular junctions. Neuron 11, 801–815 (1993).
(
10.1016/0896-6273(93)90110-D
) / Neuron by RJ Balice-Gordon (1993) -
Balice-Gordon, R. J. & Lichtman, J. W. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 519–524 (1994).
(
10.1038/372519a0
) / Nature by RJ Balice-Gordon (1994) -
Desaki, J. & Uehara, Y. Formation and maturation of subneural apparatuses at neuromuscular junctions in postnatal rats: a scanning and transmission electron microscopical study. Dev. Biol. 119, 390–401 (1987).
(
10.1016/0012-1606(87)90044-3
) / Dev. Biol. by J Desaki (1987) -
Flucher, B. E. & Daniels, M. P. Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kDa protein. Neuron 3, 163–175 (1989).
(
10.1016/0896-6273(89)90029-9
) / Neuron by BE Flucher (1989) -
Covault, J. & Sanes, J. R. Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J. Cell Biol. 102, 716–730 (1986).
(
10.1083/jcb.102.3.716
) / J. Cell Biol. by J Covault (1986) -
Kramarcy, N. R. & Sealock, R. Syntrophin isoforms at the neuromuscular junction: developmental time course and differential localization. Mol. Cell. Neurosci. 15, 262–274 (2000).
(
10.1006/mcne.1999.0823
) / Mol. Cell. Neurosci. by NR Kramarcy (2000) -
Sanes, J. R., Feldman, D. H., Cheney, J. M. & Lawrence, J. C. Brain extract induces synaptic characteristics in the basal lamina of cultured myotubes. J. Neurosci. 4, 464–473 (1984).
(
10.1523/JNEUROSCI.04-02-00464.1984
) / J. Neurosci. by JR Sanes (1984) -
Sunderland, W. J., Son, Y. J., Miner, J. H., Sanes, J. R. & Carlson, S. S. The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (α4ß2γ1) with non-erythroid spectrin. J. Neurosci. 20, 1009–1019 (2000).
(
10.1523/JNEUROSCI.20-03-01009.2000
) / J. Neurosci. by WJ Sunderland (2000) -
Grady, R. M. et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90, 729–738 (1997).
(
10.1016/S0092-8674(00)80533-4
) / Cell by RM Grady (1997) -
Deconinck, A. E. et al. Utrophin–dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90, 717–727 (1997).
(
10.1016/S0092-8674(00)80532-2
) / Cell by AE Deconinck (1997) -
Mishina, M. et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411 (1986).
(
10.1038/321406a0
) / Nature by M Mishina (1986) -
Gu, Y. & Hall, Z. W. Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron 1, 117–125 (1988).
(
10.1016/0896-6273(88)90195-X
) / Neuron by Y Gu (1988) -
Missias, A. C., Chu, G. C., Klicke, B., Sanes, J. R. & Merlie, J. P. Maturation of the acetylcholine receptor in developing skeletal muscle: regulation of the AChR γ-to-ɛ switch. Dev. Biol. 179, 223–238 (1996).
(
10.1006/dbio.1996.0253
) / Dev. Biol. by AC Missias (1996) -
Villarroel, A. & Sakmann, B. Calcium permeability increase of endplate channels in rat muscle during postnatal development. J. Physiol. (Lond.) 496, 331–338 (1996).
(
10.1113/jphysiol.1996.sp021688
) / J. Physiol. (Lond.) by A Villarroel (1996) -
Witzemann, V. et al. Acetylcholine receptor ɛ-subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc. Natl Acad. Sci. USA 93, 13286–13291 (1996).
(
10.1073/pnas.93.23.13286
) / Proc. Natl Acad. Sci. USA by V Witzemann (1996) -
Sanes, J. R. et al. Selective expression of an acetylcholine receptor–lacZ transgene in synaptic nuclei of adult muscle fibers. Development 113, 1181–1191 (1991).
(
10.1242/dev.113.4.1181
) / Development by JR Sanes (1991) -
Brenner, H. R., Witzemann, V. & Sakmann, B. Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature 344, 544–547 (1990).
(
10.1038/344544a0
) / Nature by HR Brenner (1990) -
Si, J., Miller, D. S. & Mei, L. Identification of an element required for acetylcholine receptor-inducing activity (ARIA)-induced expression of the acetylcholine receptor ɛ subunit gene. J. Biol. Chem. 272, 10367–10371 (1997).
(
10.1074/jbc.272.16.10367
) / J. Biol. Chem. by J Si (1997) -
Slater, C. R. Neural influence on the postnatal changes in acetylcholine receptor distribution at nerve–muscle junctions in the mouse. Dev. Biol. 94, 23–30 (1982).
(
10.1016/0012-1606(82)90064-1
) / Dev. Biol. by CR Slater (1982) -
Moss, B. L. & Schuetze, S. M. Development of rat soleus endplate membrane following denervation at birth. J. Neurobiol. 18, 101–118 (1987).
(
10.1002/neu.480180108
) / J. Neurobiol. by BL Moss (1987) -
Frank, E., Gautvik, K. & Sommerschild, H. Persistence of junctional acetylcholine receptors following denervation. Cold Spring Harb. Symp. Quant. Biol. 40, 275–281 (1976).
(
10.1101/SQB.1976.040.01.028
) / Cold Spring Harb. Symp. Quant. Biol. by E Frank (1976) -
Bloch, R. J., Steinbach, J. H., Merlie, J. P. & Heinemann, S. Collagenase digestion alters the organization and turnover of junctional acetylcholine receptors. Neurosci. Lett. 66, 113–119 (1986).
(
10.1016/0304-3940(86)90175-8
) / Neurosci. Lett. by RJ Bloch (1986) -
Sala, C., O'Malley, J., Xu, R., Fumagalli, G. & Salpeter, M. M. ɛ Subunit-containing acetylcholine receptors in myotubes belong to the slowly degrading population. J. Neurosci. 17, 8937–8944 (1997).
(
10.1523/JNEUROSCI.17-23-08937.1997
) / J. Neurosci. by C Sala (1997) -
Caroni, P., Rotzler, S., Britt, J. C. & Brenner, H. R. Calcium influx and protein phosphorylation mediate the metabolic stabilization of synaptic acetylcholine receptors in muscle. J. Neurosci. 13, 1315–1325 (1993).
(
10.1523/JNEUROSCI.13-03-01315.1993
) / J. Neurosci. by P Caroni (1993) -
Adams, M. E. et al. Absence of α-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J. Cell Biol. 150, 1385–1398 (2000).
(
10.1083/jcb.150.6.1385
) / J. Cell Biol. by ME Adams (2000) -
Fuhrer, C. & Hall, Z. W. Functional interaction of Src family kinases with the acetycholine receptor in C2 myotubes. J. Biol. Chem. 271, 32474–32481 (1996).
(
10.1074/jbc.271.50.32474
) / J. Biol. Chem. by C Fuhrer (1996) -
Meyer, G. & Wallace, B. G. Recruitment of a nicotinic acetylcholine receptor mutant lacking cytoplasmic tyrosine residues in its β subunit into agrin-induced aggregates. Mol. Cell. Neurosci. 11, 324–333 (1998).
(
10.1006/mcne.1998.0689
) / Mol. Cell. Neurosci. by G Meyer (1998) -
Mittaud, P., Marangi, P. A., Erb-Vogtli, S. & Fuhrer, C. Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires rapsyn and correlates with acetylcholine receptor clustering. J. Biol. Chem. 276, 14505–14513 (2001).
(
10.1074/jbc.M007024200
) / J. Biol. Chem. by P Mittaud (2001) -
Mohamed, A. S., Rivas-Plata, K. A., Kraas, J. R., Saleh, S. M. & Swope, S. L. Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. J. Neurosci. 21, 3806–3818 (2001).
(
10.1523/JNEUROSCI.21-11-03806.2001
) / J. Neurosci. by AS Mohamed (2001) -
Borges, L. S. & Ferns, M. Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering. J. Cell Biol. 153, 1–12 (2001).
(
10.1083/jcb.153.1.1
) / J. Cell Biol. by LS Borges (2001) -
Smith, C. L., Mittaud, P., Prescott, E. D., Fuhrer, C. & Burden, S. J. Src, fyn, and yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. J. Neurosci. 21, 3151–3160 (2001).Src-family kinases had been implicated in AChR clustering. This paper shows that they are dispensable for early steps, but modulate cluster stability.
(
10.1523/JNEUROSCI.21-09-03151.2001
) / J. Neurosci. by CL Smith (2001) -
Gonzalez, M. et al. Disruption of Trkb-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 24, 567–583 (1999).Neurotrophins and their Trk receptor kinases might have roles similar to those of Src kinases in modulating postsynaptic maturation or stabilization.
(
10.1016/S0896-6273(00)81113-7
) / Neuron by M Gonzalez (1999) -
Belluardo, N. et al. Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Mol. Cell. Neurosci. 18, 56–67 (2001).
(
10.1006/mcne.2001.1001
) / Mol. Cell. Neurosci. by N Belluardo (2001) -
Wells, D. G., McKechnie, B. A., Kelkar, S. & Fallon, J. R. Neurotrophins regulate agrin-induced postsynaptic differentiation. Proc. Natl Acad. Sci. USA 96, 1112–1117 (1999).
(
10.1073/pnas.96.3.1112
) / Proc. Natl Acad. Sci. USA by DG Wells (1999) -
Balasubramanian, S., Fung, E. T. & Huganir, R. L. Characterization of the tyrosine phosphorylation and distribution of dystrobrevin isoforms. FEBS Lett. 432, 133–140 (1998).
(
10.1016/S0014-5793(98)00804-7
) / FEBS Lett. by S Balasubramanian (1998) -
Akaaboune, M., Culican, S. M., Turney, S. G. & Lichtman, J. W. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286, 503–507 (1999).A new method used to show rapid and marked effects of electrical activity on AChR stability in the postsynaptic membrane, indicating mechanisms for linking activity to synaptic architecture.
(
10.1126/science.286.5439.503
) / Science by M Akaaboune (1999) - Akaaboune, M., Wilkinson, R. S. & Lichtman, J. W. Reversible photo-unbinding of AChR ligand allows study of receptor mobility at the neuromuscular junction in vivo. Soc. Neurosci. Abstr. 26, 23 (2000). / Soc. Neurosci. Abstr. by M Akaaboune (2000)
-
Loring, R. & Salpeter, M. M. Denervation increases turnover rate of junctional acetylcholine receptors. Proc. Natl Acad. Sci. USA 77, 2293–2298 (1980).
(
10.1073/pnas.77.4.2293
) / Proc. Natl Acad. Sci. USA by R Loring (1980) -
Shyng, S. L. & Salpeter, M. M. Effect of reinnervation on the degradation rate of junctional acetylcholine receptors synthesized in denervated skeletal muscles. J. Neurosci. 10, 3905–3915 (1990).
(
10.1523/JNEUROSCI.10-12-03905.1990
) / J. Neurosci. by SL Shyng (1990) -
Carroll, R. C., Beattie, E. C., Von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci. 2, 315–324 (2001).
(
10.1038/35072500
) / Nature Rev. Neurosci. by RC Carroll (2001) -
Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998).
(
10.1126/science.282.5392.1321
) / Science by G Feng (1998) -
Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).
(
10.1016/S0896-6273(00)00084-2
) / Neuron by G Feng (2000) -
Gensler, S. et al. Assembly and clustering of acetylcholine receptors containing GFP-tagged ɛ or γ subunits: selective targeting to the neuromuscular junction in vivo. Eur. J. Biochem. 268, 2209–2217 (2001).Example of a new reagent that will allow the imaging of postsynaptic development in vivo.
(
10.1046/j.1432-1327.2001.02093.x
) / Eur. J. Biochem. by S Gensler (2001) -
Keller-Peck, C. R. et al. Asynchronous synapse elimination in neonatal motor units. Studies using GFP transgenic mice. Neuron 31, 381–394 (2001).
(
10.1016/S0896-6273(01)00383-X
) / Neuron by CR Keller-Peck (2001)
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 26, 2002, 4:34 a.m.) |
Deposited | 2 years, 3 months ago (May 16, 2023, 10:11 p.m.) |
Indexed | 2 days, 3 hours ago (Aug. 28, 2025, 7:58 a.m.) |
Issued | 23 years, 9 months ago (Nov. 1, 2001) |
Published | 23 years, 9 months ago (Nov. 1, 2001) |
Published Print | 23 years, 9 months ago (Nov. 1, 2001) |
@article{Sanes_2001, title={Induction, assembly, maturation and maintenance of a postsynaptic apparatus}, volume={2}, ISSN={1471-0048}, url={http://dx.doi.org/10.1038/35097557}, DOI={10.1038/35097557}, number={11}, journal={Nature Reviews Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Sanes, Joshua R. and Lichtman, Jeff W.}, year={2001}, month=nov, pages={791–805} }