Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Robinson, C., & Bolhuis, A. (2001). Protein targeting by the twin-arginine translocation pathway. Nature Reviews Molecular Cell Biology, 2(5), 350–356.

Authors 2
  1. Colin Robinson (first)
  2. Albert Bolhuis (additional)
References 50 Referenced 151
  1. Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67, 835–851 ( 1975). (10.1083/jcb.67.3.835) / J. Cell Biol. by G Blobel (1975)
  2. Jungnickel, B., Rapoport, T. & Hartmann, E. Protein translocation: common themes from bacteria to man. FEBS Lett. 346, 73– 77 (1994). (10.1016/0014-5793(94)00367-X) / FEBS Lett. by B Jungnickel (1994)
  3. Schatz, G. & Dobberstein, B. Common principles of protein translocation across membranes. Science 271, 1519–1526 (1996). (10.1126/science.271.5255.1519) / Science by G Schatz (1996)
  4. Izard, J. W. & Kendall, D. A. Signal peptides: exquisitely designed transport promoters. Mol. Microbiol. 13, 765–773 (1994). (10.1111/j.1365-2958.1994.tb00469.x) / Mol. Microbiol. by JW Izard (1994)
  5. Dalbey, R. E. & Robinson, C. Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane. Trends Biochem. Sci. 24, 17–22 (1999). (10.1016/S0968-0004(98)01333-4) / Trends Biochem. Sci. by RE Dalbey (1999)
  6. Heins, L., Collinson, I. & Soll, J. The protein transport apparatus of chloroplast envelopes . Trends Plant Sci. 3, 56– 61 (1998). (10.1016/S1360-1385(97)01161-8) / Trends Plant Sci. by L Heins (1998)
  7. Herrmann, J. M. & Neupert, W. Protein transport into mitochondria. Curr. Opin. Microbiol. 3, 210–214 (2000). (10.1016/S1369-5274(00)00077-1) / Curr. Opin. Microbiol. by JM Herrmann (2000)
  8. Yuan, J., Henry, R., McCaffery, M. & Cline, K. SecA homolog in protein transport within chloroplasts: evidence for endosymbiont-derived sorting . Science 266, 796–798 (1994). (10.1126/science.7973633) / Science by J Yuan (1994)
  9. Laidler, V., Chaddock, A. M., Knott, T. G., Walker, D. & Robinson, C. A SecY homolog in Arabidopsis thaliana. Sequence of a full-length cDNA clone and import of the precursor protein into chloroplasts. J. Biol. Chem. 270, 17664–17667 (1995). (10.1074/jbc.270.30.17664) / J. Biol. Chem. by V Laidler (1995)
  10. Schuenemann, D., Amin, P., Hartmann, E. & Hoffman, N. E. Chloroplast SecY is complexed to SecE and involved in the translocation of the 33-kDa, but not the 23-kDa subunit of the oxygen-evolving complex. J. Biol. Chem. 274, 12177–12182 ( 1999). (10.1074/jbc.274.17.12177) / J. Biol. Chem. by D Schuenemann (1999)
  11. Mould, R. M. & Robinson, C. A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J. Biol. Chem. 266, 12189– 12193 (1991). (10.1016/S0021-9258(18)98879-4) / J. Biol. Chem. by RM Mould (1991)
  12. Line, K., Ettinger, W. F. & Theg, S. M. Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J. Biol. Chem. 267, 2688–2696 (1992). (10.1016/S0021-9258(18)45935-2) / J. Biol. Chem. by K Line (1992)
  13. Klösgen, R. B., Brock, I. W., Herrmann, R. G. & Robinson, C. Proton gradient-driven import of the 16 kDa oxygen-evolving complex protein as the full precursor protein by isolated thylakoids. Plant Mol. Biol. 18, 1031–1034 ( 1992). (10.1007/BF00019226) / Plant Mol. Biol. by RB Klösgen (1992)
  14. Robinson, C. et al. The presequence of a chimeric construct dictates which of two mechanisms are utilized for translocation across the thylakoid membrane: evidence for the existence of two distinct translocation systems. EMBO J. 13, 279–285 ( 1994). (10.1002/j.1460-2075.1994.tb06260.x) / EMBO J. by C Robinson (1994)
  15. Henry, R., Kapazoglou, A., McCaffery, M. & Cline, K. Differences between lumen targeting domains of chloroplast transit peptides determine pathway specificity for thylakoid transport. J. Biol. Chem. 269, 10189–10192 ( 1994). (10.1016/S0021-9258(17)34041-3) / J. Biol. Chem. by R Henry (1994)
  16. Chaddock, A. M. et al. A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the pH-dependent thylakoidal protein translocase . EMBO J. 14, 2715–2722 (1995).This paper showed for the first time the central importance of the twin-arginine motif in the Tat pathway. (10.1002/j.1460-2075.1995.tb07272.x) / EMBO J. by AM Chaddock (1995)
  17. Voelker, R. & Barkan, A. Two nuclear mutations disrupt distinct pathways for targeting proteins to the chloroplast thylakoid. EMBO J. 14, 3905–3914 ( 1995). (10.1002/j.1460-2075.1995.tb00062.x) / EMBO J. by R Voelker (1995)
  18. Settles, M. A. et al. Sec-independent protein translocation by the maize Hcf106 protein. Science 278, 1467– 1470 (1997).This was the first report of the hcf106 sequence and the first indication that the system might be present in bacteria. (10.1126/science.278.5342.1467) / Science by MA Settles (1997)
  19. Weiner, J. H. et al. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93, 93–101 (1998).The first report of a tat mutant, although the affected gene was incorrectly sequenced and believed to encompass both tatA and tatB. (10.1016/S0092-8674(00)81149-6) / Cell by JH Weiner (1998)
  20. Sargent, F. et al. Overlapping functions of components of a bacterial Sec-independent export pathway. EMBO J. 17, 3640– 3650 (1998).The first description of the detailed phenotypes of tatA and tatE disruptions. (10.1093/emboj/17.13.3640) / EMBO J. by F Sargent (1998)
  21. Sargent, F., Stanley, N. R., Berks, B. C. & Palmer, T. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J. Biol. Chem. 274, 36073–36082 (1999). (10.1074/jbc.274.51.36073) / J. Biol. Chem. by F Sargent (1999)
  22. Bogsch, E. G. et al. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J. Biol. Chem. 273, 18003–18006 ( 1998).First demonstration of the central importance of TatC. (10.1074/jbc.273.29.18003) / J. Biol. Chem. by EG Bogsch (1998)
  23. Wexler, M. et al. TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in Sec-independent protein export. J. Biol. Chem. 275, 16717–16722 (2000). (10.1074/jbc.M000800200) / J. Biol. Chem. by M Wexler (2000)
  24. Mori, H., Summer, E. J., Ma, X. & Cline, K. Component specificity for the thylakoidal Sec and delta pH-dependent protein transport pathways . J. Cell Biol. 146, 45– 55 (1999). / J. Cell Biol. by H Mori (1999)
  25. Walker, M. B., Roy, L. M., Coleman, E., Voelker, R. & Barkan, A. The maize tha4 gene functions in Sec-independent protein transport in chloroplasts and is related to hcf106, tatA and tatB. J. Cell Biol. 147, 267–275 (1999). (10.1083/jcb.147.2.267) / J. Cell Biol. by MB Walker (1999)
  26. Clark, S. A. & Theg, S. M. A folded protein can be transported across the chloroplast envelope and thylakoid membranes. Mol. Biol. Cell 8, 923–934 ( 1997). (10.1091/mbc.8.5.923) / Mol. Biol. Cell by SA Clark (1997)
  27. Hynds, P. J., Robinson, D. & Robinson, C. The Sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane. J. Biol. Chem. 273, 34868– 34874 (1998).References 26 and 27 showed for the first time that the thylakoid Tat system can transport folded proteins. (10.1074/jbc.273.52.34868) / J. Biol. Chem. by PJ Hynds (1998)
  28. Thomas, J. D., Daniel, R. A., Errington, J. & Robinson, C. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol. Microbiol. 39, 47–52 ( 2001). (10.1046/j.1365-2958.2001.02253.x) / Mol. Microbiol. by JD Thomas (2001)
  29. Santini, C.-L. et al. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up–shock. J. Biol. Chem. 276, 8159–8164 (2001). (10.1074/jbc.C000833200) / J. Biol. Chem. by C-L Santini (2001)
  30. Feilmeier, B. J., Iseminger, G., Schroeder, D., Webber, H. & Phillips, G. J. Green fluorescent protein functions as a reporter for protein localisation in Escherichia coli. J. Bacteriol. 182, 4068–4076 (2000). (10.1128/JB.182.14.4068-4076.2000) / J. Bacteriol. by BJ Feilmeier (2000)
  31. Berks, B. C. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol 22, 393–404 (1996).This is a comprehensive description of the rationale for the existence of the Tat pathway and a listing of predicted substrates. (10.1046/j.1365-2958.1996.00114.x) / Mol. Microbiol by BC Berks (1996)
  32. Santini, C. L. et al. A novel Sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J. 17, 101–112 (1998). (10.1093/emboj/17.1.101) / EMBO J. by CL Santini (1998)
  33. Rodrigue, A., Chanal, A., Beck, K., Müller, M. & Wu, L.-F. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat-pathway. J. Biol. Chem. 274, 13223–13228 (1999). (10.1074/jbc.274.19.13223) / J. Biol. Chem. by A Rodrigue (1999)
  34. Koussevitzky, S., Ne'eman, E., Sommer, A., Steffens, J. C. & Harel, E. Purification and properties of a novel chloroplast stromal peptidase. Processing of polyphenol oxidase and other imported precursors . J. Biol. Chem. 273, 27064– 27069 (1998). (10.1074/jbc.273.42.27064) / J. Biol. Chem. by S Koussevitzky (1998)
  35. Henry, R., Carrigan, M., McCaffrey, M., Ma, X. & Cline, K. Targeting determinants and proposed evolutionary basis for the Sec and the delta pH protein transport systems in chloroplast thylakoid membranes. J. Cell Biol. 136 , 823–832 (1997). (10.1083/jcb.136.4.823) / J. Cell Biol. by R Henry (1997)
  36. Bogsch, E., Brink, S. & Robinson, C. Pathway specificity for a pH-dependent precursor thylakoid lumen protein is governed by a 'Sec-avoidance' motif in the transfer peptide and a 'Sec-incompatible' mature protein. EMBO J. 16 , 3851–3858 (1997). (10.1093/emboj/16.13.3851) / EMBO J. by E Bogsch (1997)
  37. Simonen, M. & Palva, I. Protein secretion in Bacillus species. Microbiol. Rev. 57, 109– 137 (1993). (10.1128/MR.57.1.109-137.1993) / Microbiol. Rev. by M Simonen (1993)
  38. Hirose, I. et al. Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 146, 65–75 ( 2000). (10.1099/00221287-146-1-65) / Microbiology by I Hirose (2000)
  39. Jongbloed, J. D. H. et al. TatC is a specificity determinant for protein secretion by the twin-arginine translocation pathway. J. Biol. Chem. 275, 41350–41357 (2000). (10.1074/jbc.M004887200) / J. Biol. Chem. by JDH Jongbloed (2000)
  40. Cristobal, S., de Gier, J. W., Nielsen, H. & von Heijne, G. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J. 18, 2982– 2990 (1999).Suggests that hydrophobicity influences to a large extent the maintenance of the Sec/Tat pathway specificity in E. coli. (10.1093/emboj/18.11.2982) / EMBO J. by S Cristobal (1999)
  41. Bolhuis, A., Bogsch, E. G. & Robinson, C. Subunit interactions in the twin-arginine translocase complex of Escherichia coli. FEBS Lett. 472, 88–92 (2000). (10.1016/S0014-5793(00)01428-9) / FEBS Lett. by A Bolhuis (2000)
  42. Bolhuis, A., Mathers, J. E., Thomas, J. D., Barrett, C. M. L. & Robinson, C. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli . J. Biol. Chem. (in the press).
  43. Wu, L.-F., Ize, B., Chanal, A., Quentin, Y. & Fichant, G. Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J. Mol. Microbiol. Biotechnol. 2, 179–189 ( 2000). / J. Mol. Microbiol. Biotechnol. by L-F Wu (2000)
  44. Teter, S. A. & Theg, S. M. Energy-transducing thylakoid membranes remain highly impermeable to ions during protein translocation. Proc. Natl Acad. Sci. USA 95, 1590– 1594 (1998). (10.1073/pnas.95.4.1590) / Proc. Natl Acad. Sci. USA by SA Teter (1998)
  45. Hynds, P. J., Plücken, H., Westhoff, P. & Robinson, C. Different lumen-targeting pathways for nuclear-encoded versus cyanobacterial/plastid-encoded Hcf136 proteins. FEBS Lett. 467, 97– 100 (2000). (10.1016/S0014-5793(00)01129-7) / FEBS Lett. by PJ Hynds (2000)
  46. Brink, S., Bogsch, E. G., Edwards, W. R., Hynds, P. J. & Robinson, C. Targeting of thylakoid proteins by the ΔpH-driven twin-arginine translocation pathway requires a specific signal in the hydrophobic domain in conjunction with the twin-arginine motif . FEBS Lett. 434, 425–430 (1998). (10.1016/S0014-5793(98)01028-X) / FEBS Lett. by S Brink (1998)
  47. Mori, H. & Cline, K. A signal peptide that directs non-Sec transport in bacteria also directs efficient and exclusive transport on the thylakoid delta pH pathway. J. Biol. Chem. 273, 11405–11408 (1998). (10.1074/jbc.273.19.11405) / J. Biol. Chem. by H Mori (1998)
  48. Wexler, M., Bogsch, E. G., Palmer, T., Robinson, C. & Berks, B. C. Targeting signals for a bacterial Sec-independent export system direct plant thylakoid import by the ΔpH pathway. FEBS Lett. 431, 339– 342 (1998). (10.1016/S0014-5793(98)00790-X) / FEBS Lett. by M Wexler (1998)
  49. Halbig, D., Hou, B., Freudl, R., Sprenger, G. A. & Klösgen, R. B. Bacterial proteins carrying twin-R signal peptides are specifically targeted by the ΔpH-dependent transport machinery of the thylakoid membrane system. FEBS Lett. 447, 95–98 (1999). (10.1016/S0014-5793(99)00269-0) / FEBS Lett. by D Halbig (1999)
  50. Stanley, N. R., Palmer, T. & Berks, B. C. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J. Biol. Chem. 275, 11591–11596 (2000). (10.1074/jbc.275.16.11591) / J. Biol. Chem. by NR Stanley (2000)
Dates
Type When
Created 22 years, 11 months ago (Sept. 20, 2002, 4:11 p.m.)
Deposited 2 years, 3 months ago (May 16, 2023, 9:57 p.m.)
Indexed 2 months, 1 week ago (June 27, 2025, 6:13 a.m.)
Issued 24 years, 4 months ago (May 1, 2001)
Published 24 years, 4 months ago (May 1, 2001)
Published Print 24 years, 4 months ago (May 1, 2001)
Funders 0

None

@article{Robinson_2001, title={Protein targeting by the twin-arginine translocation pathway}, volume={2}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/35073038}, DOI={10.1038/35073038}, number={5}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Robinson, Colin and Bolhuis, Albert}, year={2001}, month=may, pages={350–356} }